SRecord

Reference Manual

Scott Finneran <scottfinneran @yahoo.com.au>
Peter Miller <pmiller @ opensource.org.au>

This document describes SRecord version 1.64
and was prepared 8 August 2025.

This document describing the SRecord program, and the SRecord program itself, are
Copyright 2014 Scott Finneran <scottfinneran @yahoo.com.au>
Copyright Peter Miller <pmiller @opensource.org.au>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Read Me(SRecord) Read Me(SRecord)

NAME
SRecord — manipulate EPROM load files

DESCRIPTION
The SRecord package is a collection of powerful tools for manipulating EPROM load files.

I wrote SRecord because when I was looking for programs to manipulate EPROM load files, I could not
find very many. The ones that I could find only did a few of the things I needed. SRecord is written in C++
and polymorphism is used to provide the file format flexibility and arbitrary filter chaining. Adding more
file formats and filters is relatively simple.

The File Formats
The SRecord package understands a number of file formats:

Ascii-Hex
The ascii-hex format is understood for both reading and writing. (Also known as the ascii-space-
hex format.)

ASM It is possible, for output only, to produce a serices of DB statements containing the data. This can
be useful for embedding data into assembler programs. This format cannot be read.

Atmel Generic
This format is produced by the Atmel AVR assembler. It is understood for both reading and
writing.

BASIC It is possible, for output only, to produce a serices of DATA statements containing the data. This
can be useful for embedding data into BASIC programs. This format cannot be read.

Binary Binary files can both be read and written.

B-Record
Files in Freescale Dragonball bootstrap b-record format can be read and written.

C It is also possible to write a C array declaration which contains the data. This can be useful when
you want to embed download data into C programs. This format cannot be read.

COE The Xilinx Coefficient File Format (.coe) is understood for output only.
Cosmac The RCA Cosmac Elf format is understood for both reading and writing.

DEC Binary
The DEC Binary (XXDP) format is understood for both reading and writing.

Elektor Monitor (EMONS52)
The EMONS2 format is understood for both reading and writing.

Fairchild Fairbug
The Fairchild Fairbug format is understood for both reading and writing.

Formatted Binary
The Formatted Binary format is understood for both reading and writing.

Four Packed Code (FPC)
The FPC format is understood for both reading and writing.

Hexdump
It is possible to get a simple hexdump as output.

IDT/sim The IDT/sim binary file format is understood for both reading and writing.

Intel The Intel hexadecimal format is understood for both reading and writing. (Also known as the
Intel MCS-86 Object format.)
Intel AOMF

The Intel Absolute Object Module Format (AOMF) is understood for both reading and writing.

Intel 16 The Intel hexadecimal 16 format is understood for both reading and writing. (Also known as the
INHX16 file format.)

Reference Manual SRecord 1

Read Me(SRecord) Read Me(SRecord)

LSI Logic Fast Load
The LSI Logic Fast Load format is understood for both reading and writing. Logisim The
Logisim format is understood for both reading and writing. See srec_logisim(5) for more
information.

Memory Initialization Format
The Memory Initialization Format (.mem) by Lattice Semiconductor is understood for writing
only.

MIF The Memory Initialization File format by Altera is supported for both reading and writing.

MOS Technology
The MOS Technology hexadecimal format is understood for both reading and writing.

MIPS-Flash
The MIPS Flash file format is supported for both reading and writing.

Motorola S-Record
The Motorola hexadecimal S-Record format is understood for both reading and writing. (Also
known as the Exorciser, Exormacs or Exormax format.)

MsBin The Windows CE Binary Image Data Format is supported both for reading and writing.

Needham
The Needham Electronics ASCII file format is understood for both reading and writing.

0S65V The Ohio Scientific hexadecimal format is understood for both reading and writing.

PPB The Stag Prom Programmer binary format is understood for both reading and writing.
PPX The Stag Prom Programmer hexadecimal format is understood for both reading and writing.
Signetics

The Signetics format is understood for both reading and writing.

SPASM The SPASM format is used by a variety of PIC programmers; it is understood for both reading
and writing.

Spectrum
The Spectrum format is understood for both reading and writing.

Tektronix (Extended)
The Tektronix hexadecimal format and the Tektronix Extended hexadecimal format are both
understood for both reading and writing.

Texas Instruments Tagged
The Texas Instruments Tagged format is understood for both reading and writing (both 8 and 16
bit). Also known as the TI-tagged or TI-SDSMAC format.

Texas Instruments ti-txt
The TI-TXT format is understood for reading and writing. This format is used with the bootstrap
loader of the Texas Instruments MSP430 family of processors.

TRS-80 The Radio Shack TRS-80 object file format is understood for reading and writing.
VHDL 1t is possible to write VHDL file. This is only supported for output.

Verilog VMEM
It is possible to write a Verilog VMEM file suitable for loading with $readmemh (). This
format is supported for reading and writing.

Wilson The Wilson format is understood for both reading and writing. This mystery format was added
for a mysterious type of EPROM writer.

The Tools
The primary tools of the package are srec_cat and srec_cmp. All of the tools understand all of the file
formats, and all of the filters.

Reference Manual SRecord 2

Read Me(SRecord) Read Me(SRecord)

srec_cat The srec_cat program may be used to catenate (join) EPROM load files, or portions of EPROM
load files, together. Because it understands all of the input and output formats, it can also be used
to convert files from one format to another.

srec_cmp
The srec_cmp program may be use to compare EPROM load files, or portions of EPROM load
files, for equality.

srec_info
The srec_info program may be used to print summary information about EPROM load files.

The Filters
The SRecord package is made more powerful by the concept of input filters. Wherever an input file may be
specified, filters may also be applied to that input file. The following filters are available:

bit reverse
The bit-reverse filter may be used to reverse the order of bits in each data byte.

byte swap
The byte swap filter may be used to swap pairs of add and even bytes.

CRC The various crc filters may be used to insert a CRC into the data.
checksum

The checksum filters may be used to insert a checksum into the data. Positive, negative and bit-
not checksums are available, as well as big-endian and little-endian byte orders.

crop The crop filter may be used to isolate an input address range, or ranges, and discard the rest.
exclude The exclude filter may be used to exclude an input address range, or ranges, and keep the rest.
fill The fill filter may be used to fill any holes in the data with a nominated value.

length The length filter may be used to insert the data length into the data.

maximum
The maximum filter may be used to insert the maximum data address into the data.

minimum
The minimum filter may be used to insert the minimum data address into the data.

offset ~ The offset filter may be used to offset the address of data records, both forwards and backwards.

random fill
The random fill filter may be used to fill holes in the data with random byte values.

split The split filter may be used to split EPROM images for wide data buses or other memory striping
schemes.

unfill The unfill filter may be used to make holes in the data at bytes with a nominated value.
unsplit The unsplit filter may be reverse the effects of the split filter.

More than one filter may be applied to each input file. Different filters may be applied to each input file.
All filters may be applied to all file formats.

ARCHIVE SITE

The latest version of SRecord is available on the Web from:

URL: http://srecord.sourceforge.net/

File: index.html # the SRecord page

File: srecord—1.64.README # Description, from the tar file
File: srecord—1.64.1sm # Description, LSM format
File: srecord—1.64.spec # RedHat package specification
File: srecord—1.64.tar.gz # the complete source

File: srecord—1.64.pdf # Reference Manual

Reference Manual SRecord 3

Read Me(SRecord) Read Me(SRecord)

BUILDING SRECORD
Full instructions for building SRecord may be found in the BUILDING file included in this distribution.

It is also possible to build SRecord on Windows using the Cygwin (www.cygwin.com) or DJIGPP
(www.delorie.com/djgpp) environments. Instructions are in the BUILDING file, including how to get
native Windows binaries.

COPYRIGHT
srecord version 1.64
Copyright © Scott Finneran <scottfinneran @yahoo.com.au>
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller <pmiller @ opensource.org.au>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in the LICENSE file included with this distribution.

AUTHOR
Peter Miller =~ E-Mail: pmiller@opensource.org.au
AVAN WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 4

Read Me(SRecord) Read Me(SRecord)

RELEASE NOTES
This section details the various features and bug fixes of the various releases. For excruciating and
complete detail, and also credits for those of you who have generously sent me suggestions and bug reports,
see the etc/CHANGES. * files.

Version 1.64 (2014-Jun-22)
* Cleaned up a few references to the maintainer’s name.

* Fixed some warnings in test 38

* Fixed bugs discovered by Mike <russiane39@gmail.com> regarding the formatting of some of the
examples where lines were wrapping the wrong way.

* Added the ability to compile without libgcrypt if the user specifies the option --without-gcrypt to
configure. If gcrypt is missing, the user is prompted to either install it or explicitly compile with it disabled.

* Cleaned up a few recent compiler and doxygen warnings.

* Added Sourceforge Patch #4 contributed by Stas Sergeev <stsp@sourceforge.net> which contributed
get_upper_bound() and makes it and the lower equivalent public (for use from libsrecord). Also fixed a bug
in srec_memory::find_next_chunk() where it would fail to reset the find_next_chunk_index once it became
equal to nchunks. After that, find_next_chunk() would always fail.

* Added prefix and postfix strings to the C Array format which are applied at each end of the data array
declaration. This allows the user to add various compiler directives such as location flags or non-standard
load address specifiers.

» when converting from AOMF Fixed Sourceforge bug 11 raised by patryks. In the analysis, it was
discovered that a start address (of zero) was being generated when converting from AOMF. AOMF does not
support the concept of an execution start address.

» The Windows build instructions have been updated by Jens Heilig <jens@familie-heilig.net>.

* Fixed the length field description in extended tektronix documentation. The implementation was already
correct.

* Added a regression test for calculated address for CRC (Sourceforge bug 19).

Version 1.63 (2014-Apr-07)
* The srec_tools now understand how to read and write Logisim formt.

* Daniel Anselmi <danselmi@gmx.ch> fixed a bug with generating Lattice Memory init files.

* This change set generalises the code that handles redundant byte settings and contradictory byte settings.
The defcon_t type describes what to do: ignore, warn or error. The ——multiple option is no more.

* Daniel Anselmi <danselmi@gmx.ch> discovered that the "mem" output format was malformed. The lines
now break every "width" bits.

* Hanspeter Niederstrasser disoverd some false negatives in the test suite, when used on OSX. Thank you
for the bug report. This has been fixed.

» Simplification of selection code to choose which CRC16 implmentation is used.

« Juliano MourAA£o Vieira <juliano@utfpr.edu.br> discovered a problem with the srec_mif.5 description.
This mistake is not present in the code.

* Liju Prasanth Nivas (RBEI/ECA1) <Liju.PrasanthNivas@in.bosch.com> suggsted another use case for the
examples. In the case of "joining" files that are meant to be “stacked in layers”. Contributions for the
examples are always appreciated. Thank you.

¢ Added more comments to the code, so that the use of URL_deode for the command line is better
explained. And comment to explain why not to do turl_encode when building header records.

* Added URL quoting to the command line. There are times you need to be able to insert unprintable
characters on the command line. The immediate use case prompting this was a user wanting to put a NUL
in the header string. So now you can, as "%00". The other choice was quoted printable encoding, but that

Reference Manual SRecord 5

Read Me(SRecord) Read Me(SRecord)

was a bit obscure.
* Fixed new warnings when building with g++ 4.8.1
* Added more links to the windows files on SourceForge, maybe it will boost download numbers.

Version 1.62 (2013-Jun-05)

* Luc Steynen <LucSteynen@edna.be> discovered that the —hecksum-big-endian opion was a counter-
intuitive alias for the the —checksum-bitnot-big-endian option. The —checksum-big-endian option is now
deprecated, in favor of the —checksum-bitnot-big-endian option; the code will warn uers of the old option
they will need to change. Ditto little-endian variants

* Alin Pilkington <apilkington@moog.com> found that the Tektronics Extended format was calculating
the record length incorrectory. Thanks you for the bug report. This has been fixed for both reading and
writing.

* Dr. Benedikt Schmitt <Benedikt.Schmitt@safeintrain.de> suggested being able to inject arbitrary data
into the file header (such as NUL termination characters). This change set adds URL-style escapes (e.g.
%?25) to the string on he command line. For example: —header or —generate —string

Version 1.61 (2013-Jan-04)
* Izzet Ozcelik <izzetozcelik@cscope.co.uk> discovered a bug in the Tektronix-Extenden format line
checksum calculations. The comparison should have been in 8 bits, not int.

* Daniel Anselmi <danselmi@gmx.ch> contributed a Memory Initialization Format by Lattice
Semiconductor, for output only.

* Daniel Anselmi <danselmi@gmx.ch> contributed a Xilinx Coefficient File Format (.coe) output class.

Version 1.60 (2012-May-19)
* There are now several additional CRC-16 polynomials, plus the ability to select a polynomial by name,
rather than by value. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for a table of names and
values.

Version 1.59 (2012-Feb-10)
* A number of additional CRC-16 polynomials have been added, as well as the ability to select a
polynomial by name, rather than by value. See srec_input(1) for more information.

Version 1.58 (2011-Dec-18)
* The —guess command line option, for guessing the file format, now also tells you the command line
option you could have used instead of —guess for the exact format.

* The Intergated Device Technology (IDT) system integration manager (IDT/sim) binary format is now
understood for both reading and writing.

* The Stag Prom Programmer binary format is now supported for both reading and writing.
* The Stag Prom Programer hexadecimal format is now understood for both reading and writing.
» The MIPS-Flash fiel format is now supported for both reading and writing.

* Bernhard Weirich <Bernhard.Weirich@riedel.net> discovered that a backward compatible
option had been omitted when the —INtel_16 option was renamed —INtel_HeX_16 to more closely
match the usual abbreviation (INHX16) for this format. The backwards compatible option name has
been reintroduced.

* The windows build instructions have been greatly imptoved, based on the experiences of Jens Heilig
<jens@familie-heilig.net> which he has generously shared.

* The documentation in the manual about sequence warnings has been improved. The —disable-sequence-
warnings option must come before the input file on the command line. My thanks to Emil Gracic
<emil_ kruki@yahoo.com> for reporting this problem.

Version 1.57 (2011-Jun-09)
» The byte order of the fletcher16 output has been reversed.

Reference Manual SRecord 6

Read Me(SRecord) Read Me(SRecord)

* The meaning of the —address-length option has been change for the Intel output format. Previously, 2
meant using i16hex 20-bit segmented addressing, and >2 meant using i32hex extended addressing. This
has been changed: a value of 2 requests i8hex 16-bit addressing, a value of 3 requests i16hex 20-bit
segment addressing, and a value >=4 requests i132hex 32-bit addressing. My thanks to Stephen R.
Phillips <srp@CSECorporation.com> for reporting the absence of i8hex support.

» The —generate —repeat-string option is now able to take a string that looks like a number as the text to
be repeated. My thanks to Stephen R. Phillips <srp@CSECorporation.com> for reporting this
problem.

* Luca Giancristofaro <luca.giancristofaro@prosa.com> discovered a WinAVR linker that is a
sandwich short of a picnic: it generated non-conforming Intel hex end-of-file records. This is no longer
an error, but only a warning.

» There were some problems with the RPM spec file, these have been improved. My thanks to Galen Seitz
<galens@seitzassoc.com> for reporting this problem.

Version 1.56 (2010-Sep-15)
* A bug has been fixed in the MsBin output, it now concatenates records correctly, and calaulate
checksums appropriately.

* It is now possible to ask the Fletcher 16 filter to give you a specific answer, and adjusting the checksum
to achieve that result. It is also possible to specify different seed values for the sums.

» There is a new srec_cat —enable=optional-address option to cause output formats capable of omitting
addresses, to omit a leading zero address, as those formats usually default the address to zero, if no
address information is seen before the first data record. Defaults to false (disabled).

* There is a new srec_cat(1) —output-block-packing option, that may be used to pack output records even
when they cross internal SRecord boundaries.

* There is a new srec_cat(1) —output-block-size so that you can specify the block size exactly, rather than
implying it with the line length option.
Version 1.55 (2010-Feb-10)

» The Makefile.in has been improved, it now copes with non-standard ——prefix options.

* The rpm.spec file has been improved, it now separates the commands, shared libraries and development
files.

Version 1.54 (2010-Jan-29)
* There is now a shared library installed, including the necessary header files so that you can use all of the
file formats and filters in your own projects.

» The license on the shared library code is GNU Lesser General Public License, version 3.0 or later.

» The code can cope with older versions of GNU Libgcrypt. In the case of very old versions, by ignoring
it.

* A number of build problems have been fixed.

Version 1.53 (2009-Nov-10)
* There is a new MsBin (Windows CE Binary Image Data) file format, supported for both reading and
writing.

* The lintian(1) warning about hyphen in the manual pages has been silenced, by careful use of —, - and —
as appropriate. Sure makes some of the sources ugly, tho. The lintian(1) warning about the undefined
.XX macro has been silenced, by making it conditional.

* The code will build without libgcrypt.

Version 1.52 (2009-Sep-17)
* There is a new srec_cat —generator —I-e-constant data generator (and also —b-e-const) that may be used
to insert multi-byte constants into your data. See srec_input(1) for more information.

Reference Manual SRecord 7

Read Me(SRecord) Read Me(SRecord)

Version 1.51 (2009-Sep-13)
* A number of gcc 4.4 build problems have been fixed.

* A bugs has been fixed in the Intel output format. When using the segemented format (address-length=2)
records that span the end of segment boundary are tricky. The code now carefully splits such output
records, to ensure the two parts are explicitly placed into separate segments.

Version 1.50 (2009-Jul-09)
» The CRCI16 code has been enhanced to provide low-to-high bit order, in addition to the previous high-to-
low bit order. It is also possible to specify the polynomial, with the default the CCITT standard
polynomial, as was in the previous code. See srec_input(1) for more information.

* The MDS5, RipeMD-160, SHA1, SHA224, SHA256, SHA384, SHA 512 and Whirlpool message digests
are now supported. See srec_input(1) for more information.

» There is a new srec_cat —bit-reverse filter, that may be used to reverse the bits in each data byte. See
srec_input(1) for more information.

Version 1.49 (2009-May-17)
* A typo in the srec_input(1) man page has been fixed.

Version 1.48 (2009-Apr-19)
* There are new Fletcher Checksum filters, both 32-bits and 16-bits, both little-endian and big-endian.

* There are new Adler Checksum filters, both 32-bits and 16-bits, both little-endian and big-endian.

Version 1.47 (2009-Feb-19)
* Memory Initialzation File (MIF) format by Altera is now supported for reading and writing.

Version 1.46 (2009-Jan-13)
* There is a new option for the ——x-e-length filters, they can now accept a width, and this is divided into
the byte lenght, so that you can insert the length in units of words (2) or longs (4).

¢ Some small corrections have been made to the documentation.

* The —minimum and —maximum options have been renamed —minimum-address and —maximum-address,
to avoid a command line grammar syntax problem.

Version 1.45 (2008-Sep-30)
* A bug has been fixed in the srec_cat(1) command. You are now able to specify several inputs within
parentheses, instead of just one. This allows filters to be applied to the concatenation of several inputs.

* The srec_cat(1) command is now able to write FORTH output.

Version 1.44 (2008-Aug-29)
* Some compilers issue a warning when const appears before extern. "warning: storage class is not first".
The C output has been updated to conform to this expectation.

* The manual page for srec_cat(1) has been enhanced to describe the in-memory data model, and the
resulting output data order.

* The —motorola optional width argument now produces a better error message when it is out of range.

» The —fill filter now checks the size, and fails for absurdly large fills, with a —big override if they really
want >1GB fills.

* A bug in the .spec file for rpmbuild has been fixed, it now takes notice of $RPM_BUILD_ROOT

* There is a new —line-termination option, which may be used to select the desired line termination of
output text files.

Version 1.43 (2008-Jul-06)
» The srec-cat —data-only option has been broken down into four separate controls. It is now possible to

—enable and —disable individual features, such as “header”, “data-count”, “execution-start-address” and
“footer”. See srec_cat(1) for more information.

Reference Manual SRecord 8

Read Me(SRecord) Read Me(SRecord)

» The srec_cat —start-address option has been renamed —execution-start-address to remove any
confusion with the —offset filter. The documentation now explicitly explains the difference between the
two.

* Examples of converting to and from binary files have been added to the srec_examples(1) man page.

* A bug has been fixed in the MOS Tech format, it now emits an end record even when there is no
execution start address passed in.

Version 1.42 (2008-Jun-01)
* The MOS Technology format was not reading and writing end records correctly, this has been fixed. The
name of the company has been corrected.

* Some examples of how to insert constant or scripted data into your EPROM load files have been added to
the srec_examples(1) man page.

Version 1.41 (2008-May-12)
» False negative being reported by tests on Cygwin have been fixed.

* There are six new filters (—be-exclusive-length, —le-exclusive-length, —be-exclusive-maximum, —le-
exclusive-maximum, —be-exclusive-minimum and —le-exclusive-minimum) which are very similar to
their non-exclusive equivalents, except that they do not include the adress range covered by their output
in their output.

* A bug has been fixed in the C word-array output. It was getting offsets and lengths wrong in some cases.
* A bug has been fixed in the generated C array header file, it no longer omits the section descriptor arrays.

* A problem with building RPM packages with the names of the executables in the .spec file has been
fixed, and the BuildRequires has been updated.

Version 1.40 (2008-Mar-13)
* An RPM build problem has been fixed.

» The dependency on the Boost library is now documented in the BUILDING file.
* Some build problems with g++ 4.3 have been fixed

* A bug has been fixed in the calculation of ranges on the command line, it no longer goes into an infinite
loop for "—fill OXxFF —over { foo.hex —exclude —within foo.hex }" construct, which should have been
calculating an empty fill set, but was instead calculating a 4GB fill set.

* The CRC32 filters now take an —xmodem option, to use an xmodem-like (all bit zero) initial state, rather
than the default CCITT (all bits on) initial state.

Version 1.39 (2008-Feb-04)
* A bug has been fixed in the use of parentheses to group filters and override the default precedences.

Version 1.38 (2008-Jan-14)
» The CRCI16 filters now support a —Broken option, to perform a common-but-broken CRC16 calculation,
in addition to the CCITT and XMODEM calculations.

* A link has been added to the CRC16 man page section to the
www.joegeluso.com/software/articles/ccitt.htm web page, to explain the difficulties in seeding CRC16
calculations.

* A buglet has been fixed in the srec_motorola(5) man page, it now includes S6 in the list of things that
can appear in the type field.

* The ability to negate expressions is now mentioned in the srec_examples(1) man page.

Version 1.37 (2007-Oct-29)
It is now possible to have negative expressions on the command line, to facilitate “——offset — —minimum
foo” usages.

* The srec_cat(1) command now has a simple hexadecimal dump output format.

Reference Manual SRecord 9

Read Me(SRecord) Read Me(SRecord)

* The use of uudecode(1) in the tests has been removed, so sharutils is no longer a build dependency.

Version 1.36 (2007-Aug-07)
* A bug has been fixed in the CRC-16 CCITT calculation; the algorithm was correct but the start value was
incorrect, leading to incorrect results.

» The CRCI16 filters have a new ——no-augment option, to omit the 16 zero bits augmenting the message.
This is not CCITT standard conforming, but some implementations do this.

* A problem has been fixed in the generated Makefile.in file found in the tarball.
» The license has been changed to GNU GPL version 3.

Version 1.35 (2007-Jun-23)
* A major build problem with the generated makefile has been fixed.

Version 1.34 (2007-Jun-22)
* The C and ASM output formats have been improved in the word mode.

* Several build problems have been fixed.

Version 1.33 (2007-May-18)
* More examples have been added to the documentation.

* It is now possible to perform set intersection and set difference on address ranges on the command line.

* There is a new category of data source: generators. You can generate constant data, random data and
repeating data.

* The assembler and C-Array outputs now support additional options to facilitate MSP430 systems. They
can also optionally write shorts rather than bytes.

* You can now round address ranges on the command line to be whole multiples of a number of bytes.

Version 1.32 (2007-Apr-24)
* The TI-TXT format output has been improved; it is less spec conforming but more reality conforming. It
now allows odd alignment without padding. It also ends with a g instead of a Q.

* The warning for odd input addresses has been dropped. The spec didn’t like them, but the MSP430
handles them without a hiccup.

Version 1.31 (2007-Apr-03)
* The Verilog format now suppresses comments when you specify the ——data-only option.

* The Texas Instruments ti-txt (MSP430) format is now understood for reading and writing.

Version 1.30 (2007-Mar-21)
* The ascii-hex output format has been improved.

» The ti-tagged 16-bit format is now understood for reading and writing.
* The Intel format no longer warns about missing optional records.
* A bug in the ti-tagged format has been fixed, it now understands the ’0’ tag.

Version 1.29 (2007-Mar-13)
* A serious bug has been fixed in the generated Makefile.

Version 1.28 (2007-Mar-08)
* It is now possible to read and write files in the Freescale MC68EZ328 Dragonball bootstrap b-record
format

Version 1.27 (2006-Dec-21)
* [SourceForge Feature Request 1597637] There is a new warning issued when input data records are not
in strictly ascending address order. There is a new command line option to silence the warning.

* [SourceForge Feature Request 1592348] The command line processing of all srecord commands now
understands @file command line options, filled with additional space separated strings witch will be
treated as of they were command line options. This gets around absurdly short command line length

Reference Manual SRecord 10

Read Me(SRecord) Read Me(SRecord)

limits in some operating systems.

Version 1.26 (2006-May-26)
It is now possible to place parentheses on the command line in more places to clarify your intent.

» This change prepares SRecord for the next public release.

Version 1.25 (2006-May-18)
» The assembler output has been enhanced to produce ORG directives, if necessary, to change the data
address.

* The srec_cat(1) command now only writes an execution start address into the output if there was an
execution start address present in the input.

Version 1.24 (2006-Mar-08)
* Additional information has been added to the lseek error when they try to seek to addresses >= 2**31

» The CRC 16 filters have been enhanced to accept an argument to specify whether CCITT or XMODEM
calculations are to be performed.

Version 1.23 (2005-Sep-23)
» A segfault has been fixed on x86_64 when running the regression test suite.

* A compile problem with the lib/srec/output/file/c.cc file has been fixed.

Version 1.22 (2005-Aug-12)
» The —byte-swap filter now has an optional width argument, to specify the address width to swap. The
default is two bytes.

* The motorola file format now accepts an additional *width’ command line argument, so you can have
16-bit and 32-bit address multiples.

* A bug has been fixed in the VMEM output format. It was failing to correctly set the next address in some
cases. This fixes SourceForge bug 1119786.

* The —C-Array output format now uses the const keyword by default, you can turn it off with the —no-
const option. The —C-Array output format can now generate an additional include file if you use the
—INClude option. This answers SourceForge feature request 942132.

* A fix for the "undefined symbols" problem when using g++ 3.x on Cygwin and MacOsX has been added
to the ./configure script.

* There is a new —ignore-checksum command line option. The —ignore-checksums option may be used to
disable checksum validation of input files, for those formats which have checksums at all. Note that the
checksum values are still read in and parsed (so it is still an error if they are missing) but their values are
not checked.

Version 1.21 (2005-Feb-07)
* More Doxygen comments have been added to the class header files.

» There is a new srec_cat ——crlf option, which may be used for force CRLF output on operating systems
which don’t use that style of line termination.

* A number of problems with GCC, particularly with the early 3.x series.

* There is a new "Stewie" format, an undocumented format loosely based on the Motorola S-Record
format, apparently used in mobile phones. More information would be most welcome.

* A number of build problems have been fixed.

Version 1.20 (2004-Feb-08)
* The AOMF format now accepts (and ignores) more record types.

Version 1.19 (2004-Jan-03)
* It is now possible to set the execution start address in the output using the srec_cat
—Execution_Start_Address command line option.

Reference Manual SRecord 11

Read Me(SRecord) Read Me(SRecord)

» The Intel Absolute Object Module Format (AOMF) is now supported for reading and writing.

* There is a new srec_cat —Random_Fill filter, like the srec_cat —Fill filter except that it uses random
values.

Version 1.18 (2004-Jan-01)
* The VMEM format is now able to output data for 64 and 128 bits wide memories.

* A bug in the SRecord reference manuals has been fixed; the CRCxx had a copy-and-paste glitch and
always said big-endian where little endian was intended half the time.

Version 1.17 (2003-Oct-12)
» There is now support for Intel Extended Segment addressing output, via the ——address-length=2 option.

* There is now support for output of Verilog VMEM format. See srec_vmem(5) for more information.

* There is now support for reading and writing the INHX16 format, used in various PIC programmers. It
looks just like the Intel Hex format, except that the bytes counts and the addresses refer to words (hi,lo)
rather than bytes. See srec_intel16(5) for more information.

Version 1.16 (2003-Jul-28)
* Some updates have been made to cope with GCC 3.2

Version 1.15 (2003-Jun-16)
» The ASCII-Hex implementation is now slightly more complete. I still haven’t found a definitive
description.

* The Fairchild Fairbug format has been added for reading and writing. See srec_fairchild(5) for more
information.

* The Spectrum format has been added for reading and writing. See srec_spectrum(S) for more
information.

* The Formatted Binary format has been added for reading and writing. See srec_formatted_binary(5) for
more information.

* The RCA Cosmac Elf format has been added for reading and writing. See srec_cosmac(5S) for more
information.

* The Needham EMP programmer format has been added for reading and writing. See srec_needham(5)
for more information.

Version 1.14 (2003-Mar-11)
* Numerous fixes have been made to header handling. It is now possible to specify an empty header with
the ~—header command line option.

* Some more GCC 3.2 build problems have been fixed.

Version 1.13 (2003-Feb-05)
* Bugs have been fixed in the Texas Instruments Tagged and VHDL formats, which produced inconsistent
output.

* A couple of build problems have been fixed.
* There are two new output formats for ASM and BASIC.

Version 1.12 (2002-Dec-06)

* Itis now possible to put —minimum input.spec (also -maximum and —length) almost anywhere on the
command line that you can put a number. It allows, for example, the —offset value to be calculated from
the maximum of the previous file. The values calculated by —Minimum, —Maximum and —Length may
also be rounded to arbitrary boundaries, using —Round_Down, —Round_Nearest and —Round_Up.

* The malformed Motorola S5 records output by the Green Hills tool chain are now understood.

Version 1.11 (2002-Oct-21)
* The Ohio Scientific OS65V audio tape format has been added for reading and writing. See
srec_os65v(5) for more information.

Reference Manual SRecord 12

Read Me(SRecord) Read Me(SRecord)

Some build problems have been fixed.

Version 1.10 (2002-Jun-14)

The Intel format now emits the redundant extended linear address record at the start of the file; some
loaders couldn’t cope without it.

The Binary format now copes with writing to pipes.
The Motorola format now understands the S6 (24-bit data record count) records for reading and writing.
The DEC Binary format now works correctly on Windows machines.

The LSI Logic Fast Load format is now understood for both reading and writing. See srec_fastload(5)
for more information.

Version 1.9 (2001-Nov-27)

The DEC Binary (XXDP) format is now understood for both reading and writing. See
srec_dec_binary(5) for more information.

The Elektor Monitor (EMONS52) format is now understood for both reading and writing. See
srec_emon52(5) for more information.

The Signetics format is now understood for both reading and writing. See srec_signetics(5) for more
information.

The Four Packed Code (FPC) format is now understood for both reading and writing. See srec_fpc(5)
for more information.

Wherever possible, header data is now passed through by srec_cat(1). There is also a new srec_cat
—header option, so that you can set the header comment from the command line.

The Atmel Generic format for Atmel AVR programmers is now understood for both reading and writing.
See srec_atmel_generic(5) for more information.

The handling of termination records has been improved. It caused problems for a number of filters,
including the —fill filter.

A bug has been fixed in the checksum calculations for the Tektronix format.

There is a new SPASM format for PIC programmers. See srec_spasm(5) for more information.

Version 1.8 (2001-Apr-20)

There is a new “unfill” filter, which may be used to perform the reverse effect of the “fill” filter.
There is a new bit-wise NOT filter, which may be used to invert the data.

A couple of bugs have been fixed in the CRC filters.

Version 1.7 (2001-Mar-19)

The documentation is now in PDF format. This was in order to make it more accessible to a wider range
of people.

There is a new srec_cat ——address-length option, so that you can set the length of the address fields in
the output file. For example, if you always want S3 data records in a Motorola hex file, use the
——address-1length=4 option. This helps when talking to brain-dead EPROM programmers which
do not fully implement the format specification.

There is a new ——multiple option to the commands, which permits an input file to contain multiple
(contradictory) values for some memory locations. The last value in the file will be used.

A problem has been fixed which stopped SRecord from building under Cygwin.

A bug has been fixed in the C array output. It used to generate invalid output when the input had holes in
the data.

Version 1.6 (2000-Dec-03)

A bug has been fixed in the C array output. (Holes in the input caused an invalid C file to be produced.)

Reference Manual SRecord 13

Read Me(SRecord) Read Me(SRecord)

There is are new CRC input filters, both 16-bit and 32-bit, both big and little endian. See srec_cat(1) for
more information.

There is a new VHDL output format.

There are new checksum filters: in addition to the existing one’s complement (bit not) checksum filter,
there are now negative and positive checksum filters. See srec_cat(1) for more information.

The checksum filters are now able to sum over 16-bit and 32-bit values, in addition to the existing byte
sums.

The srec_cmp program now has a ——verbose option, which gives more information about how the two
inputs differ. See srec_cmp(1) for more information.

Version 1.5 (2000-Mar-06)

There is now a command line option to guess the input file format; all of the tools understand this option.

The “MOS Technologies” file format is now understood for reading and writing. See srec_mos_tech(5)
for more information.

The “Tektronix Extended” file format is now understood for reading and writing. See
srec_tektronix_extended(5) for more information.

The “Texas Instruments Tagged” file format is now understood for reading and writing. (Also known as
the TI-Tagged or SDSMAC format.) See srec_ti_tagged(5) for more information.

The ““ascii-hex” file format is now understood for reading and writing. (Also known as the ascii-space-
hex format.) See srec_ascii_hex(5) for more information.

There is a new byte swap input filter, allowing pairs of odd and even input bytes to be swapped. See
srec_cat(1) for more information.

The “wilson” file format is now understood for reading and writing. This mystery format was added for
a mysterious type of EPROM writer. See srec_wilson(5) for more information.

The srec_cat program now has a —data-only option, which suppresses all output except for the data
records. This helps when talking to brain-dead EPROM programmers which barf at anything but data.
See srec_cat(1) for more information.

There is a new —Line-Length option for the srec_cat program, allowing you to specify the maximum
width of output lines. See srec_cat(1) for more information.

Version 1.4 (2000-Jan-13)

SRecord can now cope with CRLF sequences in Unix files. This was unfortunately common where the
file was generated on a PC, but SRecord was being used on Unix.

Version 1.3 (1999-May-12)

A bug has been fixed which would cause the crop and exclude filters to dump core sometimes.

A bug has been fixed where binary files were handled incorrectly on Windows NT (actually, any system
in which text files aren’t the same as binary files).

There are three new data filters. The ——OR filter, which may be used to bit-wise OR a value to each data
byte; the —AND filter, which may be used to bit-wise AND a value to each data byte; and the
——eXclusive-OR filter, which may be used to bit-wise XOR a value to each data byte. See srec_cat(1)
for more information.

Version 1.2 (1998-Nov-04)

This release includes file format man pages. The web page also includes a PostScript reference manual,
containing all of the man pages.

The Intel hex format now has full 32-bit support. See srec_intel(5) for more information.

The Tektronix hex format is now supported (only the 16-bit version, Extended Tektronix hex is not yet
supported). See srec_tektronix(5) for more information.

Reference Manual SRecord 14

Read Me(SRecord) Read Me(SRecord)

* There is a new split filter, useful for wide data buses and memory striping, and a complementary unsplit
filter to reverse it. See srec_cat(1) for more information.

Version 1.1 (1998-Mar-22)
First public release.

Reference Manual SRecord 15

Build(SRecord) Build(SRecord)

NAME
How to build SRecord

SPACE REQUIREMENTS
You will need about 3MB to unpack and build the SRecord package. Your milage may vary.

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your
installation of SRecord.

Boost Library
You will need the C++ Boost Library. If you are using a package based system, you will need the
libboost-devel package, or one named something very similar.
http://boost.org/

Libgcrypt Library
You will need the GNU Crypt library. If you are using a package based system, you will need the
libgerypt-devel package, or one named something very similar.
http://directory.fsf.org/project/libgcrypt/

GNU Libtool
You will need the GNU Libtool software, used to build shared libraries on a variety of systems.
http://www.gnu.org/software/libtool/

GNU Groff
The documentation for the SRecord package was prepared using the GNU Groff package
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time — if GNU Groff has been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if you have not done
so already. This is not essential. SRecord was developed using the GNU C++ compiler, and the
GNU C++ libraries.

The GNU FTP archives may be found at ftp.gnu.org, and are mirrored around the world.
SITE CONFIGURATION

The SRecord package is configured using the configure program included in this distribution.

The configure shell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates the Makefile and lib/config.h files. It also creates a shell script
config.status that you can run in the future to recreate the current configuration.

Normally, you just cd to the directory containing SRecord’s source code and then type
% ./configure
...lots of output...
%
If you’re using csh on an old version of System V, you might need to type
% sh configure
...lots of output...
%
instead to prevent csh from trying to execute configure itself.

Running configure takes a minute or two. While it is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, run configure using the quiet option; for example,

% ./configure ——quiet

%

To compile the SRecord package in a different directory from the one containing the source code, you must
use a version of make that supports the VPATH variable, such as GNU make. cd to the directory where you
want the object files and executables to go and run the configure script. configure automatically checks for
the source code in the directory that configure is in and in .. (the parent directory). If for some reason
configure is not in the source code directory that you are configuring, then it will report that it can’t find the

Reference Manual SRecord 16

Build(SRecord) Build(SRecord)

source code. In that case, run configure with the option ——srcdir=DIR, where DIR is the directory that
contains the source code.

By default, configure will arrange for the make install command to install the SRecord package’s files in
/usr/local/bin, and /usr/local/man. There are options which allow you to control the placement of these
files.

——prefix=PATH
This specifies the path prefix to be used in the installation. Defaults to /usr/local unless otherwise
specified.

——exec-prefix=PATH
You can specify separate installation prefixes for architecture-specific files files. Defaults to
${prefix} unless otherwise specified.

-—bindir=PATH
This directory contains executable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to ${exec_prefix}/bin unless otherwise specified.

—--mandir=PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to ${prefix}/man unless otherwise
specified.

configure ignores most other arguments that you give it; use the ——help option for a complete list.

On systems that require unusual options for compilation or linking that the SRecord package’s configure
script does not know about, you can give configure initial values for variables by setting them in the
environment. In Bourne-compatible shells, you can do that on the command line like this:

$ CXX='g++ -traditional’ LIBS=-lposix ./configure

...lots of output...

$
Here are the make variables that you might want to override with environment variables when running
configure.

Variable: CXX
C++ compiler program. The default is c++.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults to empty. It is common
to use CPPFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to install files. The default is install if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form —1foo —1bar. The configure script will append to this, rather
than replace it. It is common to use LIBS=-L/usr/local/1lib to access other installed
packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configure could check whether to do them, and mail diffs or instructions to the author so that they can be
included in the next release.

BUILDING SRECORD
All you should need to do is use the
% make
...lots of output...
%
command and wait. When this finishes you should see a directory called bin containing three files:
srec_cat, srec_cmp and srec_info.

Reference Manual SRecord 17

Build(SRecord) Build(SRecord)

srec_cat srec_cat program is used to manipulate and convert EPROM load files. For more information,
see srec_cat(1).

srec_cmp
The srec_cmp program is used to compare EPROM load files. For more information, see
srec_cmp(1).

srec_info
The srec_info program is used to print information about EPROM load files. For more
information, see srec_info(1).

If you have GNU Groff installed, the build will also create a etc/reference.ps file. This contains the
README file, this BUILDING file, and all of the man pages.

You can remove the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%
command. To remove all of the above files, and also remove the Makefile and lib/config.h and config.status
files, use the
% make distclean
...lots of output...
%
command.

The file etc/configure.in is used to create configure by a GNU program called autoconf. You only need to
know this if you want to regenerate configure using a newer version of autoconf .

Windows NT
It is possible to build SRecord on MS Windows platforms, using the Cygwin (see www.cygwin.com) or
DJGPP (see www.delorie.com/djgpp) environments. This provides the “porting layer” necessary to
run Unix programs on Windows. The build process is exactly as described above.

You may need to pass in the include path to the Boost library. This is most simply done as
CC="gcc —-no-cygwin’ \
CXX='g++ -mno-cygwin -I/usr/include/boost-1_33_1" \

DJGPP always produces native binaries, however if you want to make native binaries with Cygwin (i.e.
ones which work outside Cygwin) there is one extra step you need after running . /configure and
before you run make. You need to edit the Makefile file, and add ~-mno—cygwin to the end of the
CXX=g++ line.

Once built (using either tool set) Windows binaries should be testable in the same way as described in the
next section. However, there may be some CRLF issues in the text file comparisons which give false
negatives, depending on the CRLF setting of your Cygwin file system when you unpacked the tarball.

TESTING SRECORD
The SRecord package comes with a test suite. To run this test suite, use the command
% make sure
...lots of output...
Passed All Tests
%

The tests take a few seconds each, with a few very fast, and a couple very slow, but it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

Reference Manual SRecord 18

Build(SRecord) Build(SRecord)

INSTALLING SRECORD
As explained in the SITE CONFIGURATION section, above, the SRecord package is installed under the
/usr/local tree by default. Use the ——prefix=PATH option to configure if you want some other path.
More specific installation locations are assignable, use the ——he1p option to configure for details.

All that is required to install the SRecord package is to use the

% make install

...lots of output...

%
command. Control of the directories used may be found in the first few lines of the Makefile file and the
other files written by the configure script; it is best to reconfigure using the configure script, rather than
attempting to do this by hand.

GETTING HELP
If you need assistance with the SRecord package, please post to the srecord-users mailing list
srecord-users@lists.sourceforge.net
For information obout the srecord-users mailing list. http://srecord.sourceforge.net/mailing-list.html

When reporting problems, please include the version number given by the
% srec_cat -version
srecord version [.64.D001
...warranty disclaimer..
%
command. Please do not send this example; run the program for the exact version number.

COPYRIGHT
srecord version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 SCott Finneran

The SRecord package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

It should be in the LICENSE file included with this distribution.

AUTHOR
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 19

New Format(SRecord) New Format(SRecord)

NAME

How to add a new file format

DESCRIPTION
This section describes how to add a new file format. It’s mostly a set of reminders for the maintainer. If
you want a format added to the distribution, use this method and e-mail the maintainer a patch (generated
with diff -Nur, usually) and it can be added to the sources if appropriate.

New Files
The directory hierarchy is an echo of the class hierarchy, making it easy to guess the filename of a class,
and to work out the appropriate file name of a new class. You get used to it. It is suggested that you simply
work in the root of the source tree (exploiting tab-completion in your shell and your editor) rather than
continually changing directories up and down the source tree. All of the file names below assume this.

The following files need to be creates for a new format.

srecord/output/file/name.cc
This file is how to write the new format. Take a look at the other files in the same directory for
examples. Also check out srecord/output/file.h and srecord/output.h for various helper methods.

srecord/output/file/name.h
This is the class declaration for the above file.

srecord/input/file/name.cc
This file is how to read the new format. Take a look at the other files in the same directory for
examples. Also check out srecord/input/file.h and srecord/input.h for various helper methods.

srecord/input/file/name.h
This is the class declaration for the above file.

man/man5/srec_name.5
This file describes the format. Take a look at the other files in the same directory for examples.

If you need to describe something as “stupid”, as is all too often the case, use thesaurus.com
to find a synonym. Use the following command
find man/. -type £ | xargs grep —i synonym

to make sure it hasn’t been used yet.

test/nn/tnnmma.sh
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the
patch for your new format accepted rapidly if it comes with at least one test for its output class,
and at least one test for its input class.

If your filter has endian-ness, add tests for each endian.

Modified Files
The following files need to be updated to mention the new format.

srecord/srecord.h
Add the new include file to the list. This file controls what files are installed into the
/usr/include directory. Not all of them, just the public interface.

etc/README.man
Mention the new format in the section of this file which describes the supported file formats.

etc/index.html
Mention the new format in the section of this file which describes the supported file formats.

srecord/arglex/tool.h
Add the new format to the command line argument type enum.

If your filter has endian-ness, add one for each endian, using “_be” and “_le” suffixes.

Reference Manual SRecord 20

New Format(SRecord) New Format(SRecord)

srecord/arglex/tool.cc
Add the new format to the array of command line arguments types.

If your filter has endian-ness, add one for each endian, using “_Big_Endian” and
“_Little_Endian” suffixes.

srecord/arglex/tool/input.cc
Add the new format to the code which parses input formats.

srecord/arglex/tool/output.cc
Add the new format to the code which parses output formats.

srecord/input/file/guess.cc
Add the new format to the list of formats which are tested.

man/manl/srec_input.1
Mention the new format in the section of this file which describes the supported input file
formats.

man/manl/srec_cat.1
Mention the new format in the section of this file which describes the supported output file
formats.

Makefile
Actually, the system the maintainer uses automatically generates this file, but if you aren’t using
Aegis you will need to edit this file for your own use.

Tests
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the patch for your
new format accepted rapidly if it comes with at least one test for its output class, and at least one test for its
input class.

If your filter has endian-ness, add tests for each endian.

IMPLEMENTATION ISSUES

In implementing a new file format, there are a couple of philosophical issues which affect technical
decisions:

Be liberal in what you accept
Where ever possible, consume the widest possible interpretation of valid data. This includes
treating mandatory input fields as optional (e.g. file headers and execution start addresses), and
coping with input definitions to their logical extremes (e.g. 255 byte data records in Motorola
format). Checksums should always be checked on input, only ignore them if the —ignore-
checksums command line option has been given. Absurd line lengths must be tolerated.

Be conservative in what you produce
Even when the input is questionable, the output produced by srec_cat must always be strictly
conforming with the format definition (except as mandated by command line options, see below).
Checksums, if the format has them, must always be correct on output. Line lengths should
default to something reasonable (about 80 characters or less).

Eat Your Own Dog Food
You input class must always be able to consume what your output class produces, no matter what
combination of command line options (see below) has been selected.

Round Trip
In general, what went in is what comes out.

* The data may be re-arranged in order, the line lengths may change, but the same data should
go out as came in. (The data should be unchanged even if the format changed, assuming
equally capable formats.) The srec_cmp(1) command may be used to verify this.

e If the input has no header record, the output should not have one either (if at all possible).
This means not automatically inserting a header record if the output file code sees data as the

Reference Manual SRecord 21

New Format(SRecord) New Format(SRecord)

first method call. (The —disable=header option affects this, too.)

» If the input has no execution start address record, the output should not have one either (if at
all possible). This means not automatically inserting an execution start address record if the
output file code does not see one by the time the destructor is called. (The —disable=exec-
start-addr flag affects this, too.)

* Write at least one test that does a “round trip” of data through the new format and back again,
exercising any interesting boundary conditions along the way (e.g. data records spanning
segment boundaries).

Holes Do not to fill in holes in the data. That said, sometimes you have to fill holes in the data. This
happens, for example, when a 16-bit format is faced with an 8-bit byte of data for one or other
half of a 16-bit word. If there is no other way around it, call the fatal_alignment_error method,
which will suggest a suitable input filter.

OPTIONS

There are also some command line arguments you will need to take into account:

—address-length
This options is used to specify the minimum address length, if your new format has a choice
about how many bytes of address it produces.

—data-only
This option implies all of the —disable=header, —disable=data-count —disable=exec-start-addr
and —disable=footer options. Only the essential data records are produced.

—disable=header
If this option is used, no header records are to be produced (or minimal header records). This is
available as the enable_header_flag class variable in the methods of your derived class.

—disable=data-count
If this option is used, no data record count records are to be produced. This is available as the
enable_data_count_flag class variable in the methods of your derived class.

—disable=exec-start-addr
If this option is used, no execution start address records are to be produced. This is available as
the enable_goto_addr_flag class variable in the methods of your derived class.

—disable=footer
If this option is used, no end-of-file records are to be produced. This is available as the
enable_footer_flag class variable in the methods of your derived class.

—enable=optional-address
If this option is used, in combination with a format that does not have an address on every line,
the the first zero address many be omitted. All subsequent addresses are not optional, just the
first zero address. Defaults to disabled.

—ignore-checksums
If this flag is set, your file input methods must parse but not check checksums, if the format has
checksums. You can tell if you need to use checksums by calling the use_checksums ()
method within the implementation of your derived class. This only applies to input; output must
always produce correct checksums.

—line-length
Where your output format is text, and there exists the possibility of putting more or less text on
each line (e.g. the Motorola format allows a variable number of data bytes per record) then this
should be controllable. This manifests in the address_length_set and
preferred_block_size_get methods you must implement in your derived class.

CODING STYLE
Please following the coding style of the existing code. It makes your patches and contributions more likely
to be accepted if they don’t have to be extensively reformatted.

Reference Manual SRecord 22

New Format(SRecord) New Format(SRecord)

Indent increments are four characters. Do not use tab characters at all, nobody can agree how wide they are
supposed to be. Line length is 80 characters or fewer, no exceptions.

Please follow the existing convention of always using Doxygen comments on all your instance variables
and methods, even for private methods. Always document all arguments of all methods, even private
methods, using @param tags; see existing style. Always use whole sentences in your Doxygen
documentation, see existing code for examples.

Do not use upper case letters in file names. Do not use white space or shell special characters in file names.

When sending a patch please use “diff —Nur”, as this will include your new files in the patch, and you will
not need additional attachments in your email. Patches are preferred over tarballs.

Include tests. It makes your patches and contributions more likely to be accepted if the maintainer doesn’t
have to write your tests for you. See sources for examples of existing tests.

CONTRACT RATES
It is possible to have the maintainer write your new file format or new filter for you. However, if you want
it done for nothing, you will be put at the end of a (very) long queue of other gratis open source work the
maintainer has yet to do. You can jump the queue if you want to pay the maintainer to do the work for you.

The maintainer’s rates are AU$100 per hour.

A well document new format typically takes six hours to write and test, this includes both reading and
writing the new format. A well documented new filter typically takes three hours to write and test.

Examples make these tasks easier. Poor documentation makes these tasks take longer. A mystery format
that requires reverse engineering may take much longer; ask again once you have figured it out.

All code written for you will be included in the project source tarball in its next release. All formats and
filters written for you will be copyright Scott Finneran;E-Mail:;scottfinneran @yahoo.com.au, and they will
be GNU GPL licensed. If you need a format or filter written, it has value to you; the issue of freeloaders is
irrelevant.

Conversely, integrating complete open source contributions and patches is done gratis, and usually done as
promptly as time permits.

AUTHOR
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 23

New Filter(SRecord) New Filter(SRecord)

NAME

How to add a new filter

DESCRIPTION
This section describes how to add a new filter. It’s mostly a set of reminders for the maintainer. If you
want a filter added to the distribution, use this method and e-mail the maintainer a patch (generated with
diff -Nur, usually) and it can be added to the sources if appropriate.

New Files
The directory hierarchy is an echo of the class hierarchy, making it easy to guess the filename of a class,
and to work out the appropriate file name of a new class. You get used to it. It is suggested that you simply
work in the root of the source tree (exploiting tab-completion in your shell and your editor) rather than
continually changing directories up and down the source tree. All of the file names below assume this.

The following files need to be created for a new filter.

srecord/input/filter/name.cc
This file is how to process the new filter. Take a look at the other files in the same directory for
examples. Also read srecord/input.h and srecord/input/filter.h for various helper methods.

srecord/input/filter/name.h
This is the class declaration for the above file.

srecord/input/filter/message/name.cc
If your filter needs all of the data to be known before it can proceed, or it needs all of the data to
appear in ascending address order, derive from the srec_input_filter_message class,
instead. This takes care of all data handling, you only have to write the method that computes the
result from the data. Take a look at the other files in the same directory for examples.

srecord/input/filter/message/name.h
This is the class declaration for the above file.

test/nn/tnnmma.sh
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the
patch for your new filter accepted rapidly if it comes with at least one test.

Modified Files
The following files need to be updated to mention the new filter.

srecord/srecord.h
Add the new include file to the list. This file controls what files are installed into the
/usr/include directory. Not all of them, just the public interface.

etc/README.man
Mention the new filter in the section of this file which describes the supported filters.

etc/index.html
Mention the new filter in the section of this file which describes the supported filters.

srecord/arglex/tool.h
Add the new filter to the command line argument type enum.

If your filter has endian-ness, add one for each endian, using “_be” and “_le” suffixes.

srecord/arglex/tool.cc
Add the new filter to the array of command line arguments types.

If your filter has endian-ness, add one for each endian, using “_Big_Endian” and
“_Little_Endian” suffixes.

srecord/arglex/tool/input.cc
Add the new filter to the code which parses input filters.

If your filter has endian-ness, add your command line tokens to the switch in the
srecord::arglex_tool::get_endian_by_token method.

Reference Manual SRecord 24

New Filter(SRecord) New Filter(SRecord)

man/manl/o_input.so
Mention the new filter in the section of this file which describes the supported input filters.

Makefile
Actually, the system the maintainer has Aegis automatically generate this file, but if you aren’t
using Aegis you will need to edit this file for your own use.

Tests
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the patch for your
new filter accepted rapidly if it comes with at least one test.

If your filter has endian-ness, add tests for each endian.

IMPLEMENTATION ISSUES

In implementing a new filter, there are a couple of philosophical issues which affect technical decissions:

* Be liberal in what you accept. Where ever possible, consume the widest possible interpretation of
“valid” data. You especially need to cope with data with holes, and data records out of order, and data
records not nicely aligned.

If your filter has endian-ness, add tests for each endian.

* Be conservative in what you produce. Even when the input is weird, the output produced by the filter
must be conforming. E.g. the byte-swap filter still works when it has only one of the two bytes, and the
other is a hole; it swaps the byte and the hole.

» If the input has no header record, the output should not have one either.
* If the input has no execution start address record, the output should not have one either.

* Do not to fill in holes in the data, unless you are a writing a “fill” filter. See the
srecord/input/filter/message. cc file for an example of issuing a warning in the presence
of holes.

» If the new filter is supposed to be its own inverse (e.g. byte-swap), or a pair of filters are supposed to be
inverses (e.g. split and unsplit) be sure to write a test to confirm this. The tests should exersize all of the
boundary conditions (e.g. around the edges of holes, extremes of data ranges).

CODING STYLE
Please following the coding style of the existing code. It makes your patches and contributions more likely
to be accepted if they don’t have to be extensively reformatted.

Indent increments are four characters. Do not use tab characters at all, nobody can agree how wide they are
supposed to be. Line length is 80 characters or fewer, no exceptions.

Please follow the existing convention of always using Doxygen comments on all your instance variables
and methods, even for private methods. Always document all arguments of all methods, even private
methods, using @param tags; see existing style. Always use whole sentences in your Doxygen
documentation, see existing code for examples.

Do not use upper case letters in file names. Do not use white space or shell special characters in file names.

When sending a patch please use “diff —Nur”, as this will include your new files in the patch, and you will
not need additional attachments in your email. Patches are preferred over tarballs.

Include tests. It makes your patches and contributions more likely to be accepted if the maintainer doesn’t
have to write your tests for you. See sources for examples of existing tests.

CONTRACT RATES
It is possible to have the maintainer write your new file format or new filter for you. However, if you want
it done for nothing, you will be put at the end of a (very) long queue of other gratis open source work the
maintainer has yet to do. You can jump the queue if you want to pay the maintainer to do the work for you.

The maintainer’s rates are AU$100 per hour.

A well document new format typically takes six hours to write and test, this includes both reading and

Reference Manual SRecord 25

New Filter(SRecord) New Filter(SRecord)

writing the new format. A well documented new filter typically takes three hours to write and test.

Examples make these tasks easier. Poor documentation makes these tasks take longer. A mystery format
that requires reverse engineering may take much longer; ask again once you have figured it out.

All code written for you will be included in the project source tarball in its next release. All formats and
filters written for you will be copyright Scott Finneran;E-Mail:;scottfinneran @yahoo.com.au, and they will
be GNU GPL licensed. If you need a format or filter written, it has value to you; the issue of freeloaders is
irrelevant.

Conversely, integrating complete open source contributions and patches is done gratis, and usually done as
promptly as time permits.

AUTHOR
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 26

srec_cat(1) General Commands Manual srec_cat(1)

NAME
srec_cat — manipulate EPROM load files

SYNOPSIS
srec_cat [option...] filename...
srec_cat —Help
srec_cat —VERSion

DESCRIPTION
The srec_cat program is used to assemble the given input files into a single output file. The use of filters
(see below) allows significant manipulations to be performed by this command.

Data Order
The data from the input files is not immediately written to the output, but is stored in memory until the
complete EPROM image has been assembled. Data is then written to the output file in ascending address
order. The original ordering of the data (in those formats capable of random record ordering) is not
preserved.

Data Comparison
Because input record order is not preserved, textual comparison of input and output (such as the diff(1) or
tkdiff(1) commands) can be misleading. Not only can lines appear in different address orders, but line
lengths and line termination can differ as well. Use the srec_cmp(1) program to compare two EPROM load
files. If a text comparison is essential, run both files through the srec_cat(1) program to ensure both files to
be compared have identical record ordering and line lengths.

Data Conflicts
The storing of data in memory enables the detection of data conflicts, typically caused by linker sections
unintentionally overlapping.

* A warning will be issued for each address which is redundantly set to the same value.

* A fatal error will be issued if any address is set with contradictory values. To avoid this error use an
—exclude —within filter (see srec_input(1)) or, to make it a warning, use the —contradictory-bytes
option (see below).

* A warning will be issued for input files where the data records are not in strictly ascending address order.
To suppress this warning, use the —disable-sequence-warning option (see below).

These features are designed to detect problems which are difficult to debug, and detects them before the
data is written to an EPROM and run in your embedded system.

INPUT FILE SPECIFICATIONS
Input may be qualified in two ways: you may specify a data file or a data generator. format and you may
specify filters to apply to them. An input file specification looks like this:
data-file [filter ...]
data-generator [filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looks like this:
filename [format][—ignore-checksums]
The default format is Motorola S-Record format, but many others are also understood.

Data Generators
It is also possible to generate data, rather than read it from a file. You may use a generator anywhere you
could use a file. An input generator specification looks like this:
—GENerate address-range —data-source
Generators include random data and various forms of constant data.

Common Manual Page
See srec_input(1) for complete details of input specifiers. This description is in a separate manual page
because it is common to more than one SRecord command.

Reference Manual SRecord 27

srec_cat(1)

OPTIONS

General Commands Manual srec_cat(1)

The following options are understood:

@filename

The named text file is read for additional command line arguments. Arguments are separated by
white space (space, tab, newline, efc). There is no wildcard mechanism. There is no quoting
mechanism. Comments, which start with *# and extend to the end of the line, are ignored.
Blank lines are ignored.

—QOutput filename [format |

Reference Manual

This option may be used to specify the output file to be used. The special file name “—[rq] is
understood to mean the standard output. Output defaults to the standard output if this option is
not used.

The format may be specified as:

—Absolute_Object_Module_Format
An Intel Absolute Object Module Format file will be written. (See srec_aomf (5) for a
description of this file format.)

—Ascii_Hex
An Ascii-Hex file will be written. (See srec_ascii_hex(5) for a description of this file
format.)

—ASM [prefix][—option...]
A series of assembler DB statements will be written.

The optional prefix may be specified to change the names of the symbols generated.
The defaults to "eprom" if not set.

Several options are available to modify the style of output:

—Dot_STyle
Use "dot" style pseudo-ops instead of words. For example .byte instead of
the DB default.

—HEXadecimal_STyle
Use hexadecimal numbers in the output, rather than the default decimal
numbers.

—Section_STyle
By default the generated assemble of placed at the correct address using ORG
pseudo-ops. Section style output emits tables of section addresses and
lengths, so the data may be related at runtime.

—A430 Generate output which is compliant to the a430 . exe compiler as it is used,
e.g. in AR Embedded Workbench. This is short-hand for —section-style
—hex-style

—CL430 Generate output which is Code Composer Essentials compliant, i.e. the
compiler of it. This is short-hand for —section-style —hex-style —dot-style

—Output_Word

Generate output which is in two-byte words rather than bytes. This assumes
little-endian words; you will need to use the —Byte-Swap filter if your target
is big-endian. No attempt is made to align the words onto even address
boundaries; use and input filter such as

input-file —fill OXFF —within input-file

—range-pad 2
to pad the data to whole words first.

SRecord 28

srec_cat(1)

Reference Manual

General Commands Manual srec_cat(1)

—Atmel_Generic
An Atmel Generic file will be written. (See srec_atmel_generic(5) for a description of
this file format.)

—-BASic A series of BASIC DATA statements will be written.

-B-Record
A Freescale MC68EZ328 Dragonball bootstrap b-record format file will be written.
(See srec_brecord(5) for a description of this file format.)

—Binary
A raw binary file will be written. If you get unexpected results please see the
srec_binary(5) manual for more information.

—C-Array [identifier][—option... |
A C array defintion will be written.

The optional identifier is the name of the variable to be defined, or bugus if not
specified.

—INClude
This option asks for an include file to be generated as well.

—No-CONST
This options asks for the variables to not use the const keyword (they are
declared constant be default, so that they are placed into the read-only
segment in embedded systems).

—C_COMpressed
These options ask for an compressed c-array whose memory gaps will not be
filled.

—Output_Word
This option asks for an output which is in words not in bytes. This is little
endian, so you may need to

—PREfix string
This option allows a string to be prepended to the array definition. This is
commonly used for non-standard options common to cross compilers.

-POSTfix string
This option allows a string to be appended to the array definition. This is
commonly used for non-standard options common to cross compilers.

—COE This option says to use the Xilinx Coefficient File Format (.coe) for output. (See
srec_coe(S) for a description of this file format.)

—COsmac
An RCA Cosmac Elf format file will be written. (See srec_cosmac(5) for a description
of this file format.)

—Dec_Binary
A DEC Binary (XXDP) format file will be written. (See srec_dec_binary(5) for a
description of this file format.)

—Elektor_Monitor52
This option says to use the EMONS52 format file when writing the file. (See
srec_emon52(5) for a description of this file format.)

—FAlIrchild
This option says to use the Fairchild Fairbug format file when writing the file. (See
srec_fairchild(5) for a description of this file format.)

SRecord 29

srec_cat(1)

Reference Manual

General Commands Manual srec_cat(1)

—Fast_Load
This option says to use the LSI Logic Fast Load format file when writing the file. (See
srec_fastload(5) for a description of this file format.)

—Formatted_Binary
A Formatted Binary format file will be written. (See srec_formatted_binary(5) for a
description of this file format.)

—FORTH [-option]
A FORTH input file will be written. Each line of output includes a byte value, an
address, and a command.

—RAM The store command is C! This is the default.

-EEPROM
The store command is EEC!

—Four_Packed_Code
This option says to use the PFC format file when writing the file. (See srec_fpd(5) for
a description of this file format.)

—-HEX_Dump
A human readable hexadecimal dump (including ASCII) will be printed.

-IDT AnIDT System Integration Manager (IDT/sim) binary file will be written. (See
srec_idt(5) for a description of this file format.)

—Intel An Intel hex format file will be written. (See srec_intel(5) for a description of this file
format.) The default is to emit “i32hex” 32-bit linear addressing; if you want “il16hex”
20-bit extended segment addressing use the —address-length=3 option, if you want
“i8hex” 16-bit addressing use the —address-length=2 option.

—Intel_HeX_16
An Intel-16 hex format (INHX16) file will be written. (See srec_intell6(5) for a
description of this file format.)

—Lattice_Memory_Initialization_Format [width]
The Memory Initialization Format (.mem) by Lattice Semiconductor is understood for
writing only. (A.k.a. -MEM) (See srec_mem(5) for a description of this file format.)
-LOGisim
LOginsim logic simuator uses the format See —srec_logisim(5) form more information.
—Memory_Initialization_File [width |
Memory Initialization File (MIF) by Altera format will be written. The width defaults
to 8 bits. (See srec_mif(5) for a description of this file format.)

—Mips_Flash_Big_Endian

—Mips_Flash_Little_Endian
MIPS Flash file format will be written. (See srec_mips_flash(5) for a description of
this file format.)

—MOS_Technologies
An Mos Technologies format file will be written. (See srec_mos_tech(5) for a
description of this file format.)

—Motorola [width |
A Motorola S-Record file will be written. (See srec_motorola(5) for a description of
this file format.) This is the default output format. By default, the smallest possible
address length is emitted, this will be S19 for data in the first 64KB; if you wish to
force S28 use the —address-length=3 option; if you wish to force S37 use the
—address-length=4 option

The optional width argument describes the number of bytes which form each address

SRecord 30

srec_cat(1) General Commands Manual srec_cat(1)

multiple. For normal uses the default of one (1) byte is appropriate. Some systems
with 16-bit or 32-bit targets mutilate the addresses in the file; this option will imitate
that behavior. Unlike most other parameters, this one cannot be guessed.

—MsBin This option says to use the Windows CE Binary Image Data Format to write the file.
See srec_msbin(5) for a description of this file format.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to write the file.
See srec_needham(5) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific hexadecimal format. See srec_os65v(5) for
a description of this format.

—PPB This option says to use the Stag Prom Programmer binary format. See srec_ppb(5) for
a description of this format.

—PPX This option says to use the Stag Prom Programmer hexadecimal format. See
srec_ppx(5) for a description of this format.

—SIGnetics
This option says to use the Signetics hex format. See srec_signetics(5) for a description
of this format.

—SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). See srec_spasm(S) for a description of this format.

—SPAsm_Little_Endian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). But with the data the other way around.

—STewie
A Stewie binary format file will be written. (See srec_stewie(5) for a description of
this file format.)

—Tektronix
A Tektronix hex format file will be written. (See srec_tektronix(5) for a description of
this file format.)

—Tektronix_Extended
A Tektronix extended hex format file will be written. (See srec_tektronix_extended(5)
for a description of this file format.)

—Texas_Instruments_Tagged
A TI-Tagged format file will be written. (See srec_ti_tagged(S) for a description of
this file format.)

—Texas_Instruments_Tagged_16
A Texas Instruments SDSMAC 320 format file will be written. (See
srec_ti_tagged_16(5) for a description of this file format.)

—Texas_Instruments_TeXT
This option says to use the Texas Instruments TXT (MSP430) format to write the file.
See srec_ti_txt(5) for a description of this file format.

—-TRS80
This option says to use the Radio Shack TRS-80 object file format to write the file. See
srec_trs80(5) for a description of this file format.

-VHdI [bytes-per-word [name 1]
A VHDL format file will be written. The bytes-per-word defaults to one, the name
defaults to eprom. The etc/x_defs_pack.vhd file in the source distribution contains an

Reference Manual SRecord 31

srec_cat(1) General Commands Manual srec_cat(1)

example ROM definitions pack for the type-independent output. You may need to use
the —byte-swap filter to get the byte order you want.

—VMem [memory-width |
A Verilog VMEM format file will be written. The memory-width may be 8, 16, 32, 64
or 128 bits; defaults to 32 if unspecified. (See srec_vmem(5) for a description of this
file format.) You may need to use the —byte-swap filter to get the byte order you want.

-WILson
A wilson format file will be written. (See srec_wilson(S) for a description of this file
format.)

—Address_Length number
This option many be used to specify the minimum number of bytes to be used in the output to
represent an address (padding with leading zeros if necessary). This helps when talking to
imbecilic EPROM programmer devices which do not fully implement the format specification.

—CRLF This option is short-hand for the —line-termination=crlf option. For use with hare-brained
EPROM programmer devices which assume all the world uses Evil Bill’s operating system’s line
termination.

—Data_Only
This option implies the —disable=header, —disable=data-count, —disable=exec-start-address
and —disable=footer options.

—DISable feature-name
This option is used to disable the output of a named feature. See the —enable option for a
description of the available features.

—ENable feature-name
This option is used to enable the output of a named feature.

Header This feature controls the presence of header records, records which appear before the
data itself. Headers often, but not always, include descriptive text.

Execution_Start_Address
This feature controls the presence of execution start address records, which is where the
monitor will jump to and start executing code once the hex file has finished loading.

Data_Count
This feature controls the presence of data record count records, which appear aftre the
data, and state how many data records preceeded them. Usually a data integrity
mechanism.

Footer This feature controls the presence of a file termination record, one that does not double
as an execution start address record.

Optional_Address
In formats that have the address and the data separated or partially separated (as
opposed to having a complete address in every record) it is possible to disable emitting
the first address where that address would be zero, as these format often default the
address to zero if no address is seen beofre the first data record. This is disabled by
default, the zero address is always emitted.

Not all formats have all of the above features. Not all formats are able to optionally omit any or
all the above features. Feature names may be abbreviated like command line option names.

—Execution_Start_Address number
This option may be used to set the execution start address, in those formats which support it. The
execution start address is where the monitor will jump to and start executing code once the hex
file has finished loading, think of it as a “goto” address. Usually ignored by EPROM
programmer devices. This option implies the —enable=exec-start-addr option.

Reference Manual SRecord 32

srec_cat(1) General Commands Manual srec_cat(1)

Please note: the execution start address is a different concept than the first address in memory of
your data. If you want to change where your data starts in memory, use the —offset filter.

—-HEAder string
This option may be used to set the header comment, in those formats which support it. This
option implies the —enable=header option.

If you need to inject binary data into the header, use the URL encoding that uses % followed by
two hexadeimal characters. For example a backspace would be encoded as “%08”.

—IGnore_Checksums
The —IGnore-Checksums option may be used to disable checksum validation of input files, for
those formats which have checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if they are missing) but their values are not checked. Used after an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all following files.

—Line_Termination style-name
This option may be used to specify line termination style for text output. The default is to use the
host operating system’s default line termination style (but Cygwin behaves as if it’s Unix). Use
this option with caution, because it will also introduce extra (i.e. wrong) CR bytes into binary
formats.

Carriage_Return_Line_Feed
Use the CRLF line termination style, typical of DOS and M$ Windows.

NewLine
Use the NL line termination style, typical of Unix and Linux.

Carriage_Return
Use the CR line termination style, typical of Apple Macintosh.

All other line termination style names will produce a fatal error. Style names may be abbreviated
like command line option names.

—Line_Length number
This option may be used to limit the length of the output lines to at most number characters. (Not
meaningful for binary file format.) Defaults to something less than 80 characters, depending on
the format. If you need to control the maximum number of bytes in each output record, use the
——Ouput_Block_Size option.

—Output_Block_Size number
This option may be used to specify the exact number of data bytes to appear in each output
record. There are format-specific limitations on this value, you will get an error if the value isn’t
valid. If you need to control the maximum number of characters on a line of text output, use the
—-Line_Length option.

—Output_Block_Packing
From time to time, with large files, you may notice that your data records are spit unexpectedly
on output. This usually happens where record lengths are not a power of 2. If this bothers you
(or your comparison tools) this option may be used to repack the output so that SRecord’s
internal block boundaries are not visable in the output.

—Output_Block_Alignment
This option is similar to the —Output_Block_Packing option, except that short records are used
after holes to cause subsequent records to be placed on a block size boundary.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address order. Only one warning is issued per input file. This is the default.

Note: the output of srec_cat(1) is always in this order.

Reference Manual SRecord 33

srec_cat(1) General Commands Manual srec_cat(1)

Note: This option must be used before the input file. This is because if there are several files on
the command line, each may need different settings. The setting remains in force until the next
—Disable_Sequence_Warnings option.

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
strictly ascending address order.

Note: This option must be used before the offending input file. This is because if there are
several files on the command line, each may need different settings. The setting remains in force
until the next —Ensable_Sequence_Warnings option.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “~help”, “~HEL” and “—h” are all interpreted to mean the —Help option. The
argument “—hlp” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_cat are long, this means
ignoring the extra leading “~". The “——option=value” convention is also understood.

EXIT STATUS
The srec_cat command will exit with a status of 1 on any error. The srec_cat command will only exit with
a status of O if there are no errors.

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 34

srec_cmp(1) General Commands Manual srec_cmp(1)

NAME
srec_cmp — compare two EPROM load files for equality

SYNOPSIS
srec_cmp [option...] filename...
srec_cmp —Help
srec_cmp —VERSion

DESCRIPTION

The srec_cmp program is used to compare two EPROM load files for equality. This comparison is
performed irrespective of the load order of the data in each of the files.

INPUT FILE SPECIFICATIONS
Input may be qualified in two ways: you may specify a data file or a data generator. format and you may
specify filters to apply to them. An input file specification looks like this:
data-file [filter ...]
data-generator [filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looks like this:
filename [format][—ignore-checksums]
The default format is Motorola S-Record format, but many others are also understood.

Data Generators
It is also possible to generate data, rather than read it from a file. You may use a generator anywhere you
could use a file. An input generator specification looks like this:
—GENerate address-range —data-source
Generators include random data and various forms of constant data.

Common Manual Page
See srec_input(1) for complete details of input specifiers. This description is in a separate manual page
because it is common to more than one SRecord command.

OPTIONS

The following options are understood:

@filename
The named text file is read for additional command line arguments. Arguments are separated by
white space (space, tab, newline, efc). There is no wildcard mechanism. There is no quoting
mechanism. Comments, which start with *# and extend to the end of the line, are ignored.
Blank lines are ignored.

—Help

Provide some help with using the srec_cmp program.

—IGnore_Checksums
The —IGnore-Checksums option may be used to disable checksum validation of input files, for
those formats which have checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if they are missing) but their values are not checked. Used after an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address order. Only one warning is issued per input file. This is the default.

Note: the output of srec_cat(1) is always in this order.

Note: This option must be used before the input file. This is because if there are several files on
the command line, each may need different settings. The setting remains in force until the next
—Disable_Sequence_Warnings option.

Reference Manual SRecord 35

srec_cmp(1) General Commands Manual srec_cmp(1)

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
strictly ascending address order.

Note: This option must be used before the offending input file. This is because if there are
several files on the command line, each may need different settings. The setting remains in force
until the next —Ensable_Sequence_Warnings option.

—redundant-bytes=value
Use this option to permit a file to contain redundant values for some memory locations. The
default is for this condition to be a warning.

ignore
No warning or error is issued whena redundant settings are detected.

warning
A warning is issued when a redundant settings are observed, the warning includes the
problematic address.

error
A fatal error is issued when a redundant settings are observed, the fatal error message
includes the problematic address and byte value.

—contradictory-bytes=value
Use this option to permit a file to contain contradictory values for some memory locations. The
last value in the input(s) will be used. The default is for this condition to be a fatal error.

ignore
No warning or error is issued when contradictory setting is detected.

warning
A warning is issued when a vontradictory settings are observed, the warning includes the
problematic address, and values.

error
A fatal error is issued when contradictory settings are observed, the fatal error message
includes the problematic address and byte values.

-VERSion
Print the version of the srec_cmp program being executed.

—Verbose
This option may be used to obtain more information about how and where the two files differ.
Please note that this takes longer, and the output can be voluminous.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “~help”, “~HEL” and “~h” are all interpreted to mean the —Help option. The
argument “—hlp” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_cmp are long, this means
ignoring the extra leading “~". The “——option=value” convention is also understood.

Reference Manual SRecord 36

srec_cmp(1) General Commands Manual srec_cmp(1)

EXIT STATUS

The srec_cmp command will exit with a status of 1 on any error. The srec_cmp command will only exit
with a status of 0 if there are no errors.

EXAMPLE

A common use for the srec_cmp command is to verify that a particular signature is present in the code. In

this example, the signature is in a file called “signature[rq], and the EPROM image is in a file called

“image[rq]. We assume they are both Motorola S-Record format, although this will work for all formats:
srec_cmp signature image -crop -within signature

The signature need not be at the start of memory, nor need it be one single contiguous piece of memory. In

the above example, the portions of the image which have the same address range as the signature are

compared with the signature.

COPYRIGHT
srec_cmp version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,

2013, 2014 Peter Miller

The srec_cmp program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cmp
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cmp —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 37

srec_examples(1) i srec_examples(1)

NAME

srec_examples — examples of how to use SRecord

DESCRIPTION
The srec_cat command is very powerful, due to the ability to combine the the input filters in almost
unlimited ways. This manual page describes a few of them.

This manual page describes how to use the various input files, input filters and input generators. But these
are only examples, for more complete details, see the srec_input(1) manual page.

The Commands Lines Are Too Long
If you are marooned on an operating system with absurdly short command line length limits, some of the
commands which follow may be too long. You can get around this handicap by placing your command line
in a file, say fred.txt, and then tell srec_cat(1) to read this file for the rest of its command line, like this

srec_cat Qfred.txt

This also has the advantage of allowing comments, allowing you to write your command line options over
several lines, and even indenting to make the command more clear. Comments start at a “#” and extend to
the end of the line. Blank lines are ignored.

Of course, you could always upgrade to Linux, which has been sucking less for over 33 years now.

Your Examples Wanted
If you have a clever way of using SRecord, or have solved a difficult problem with SRecord, you could
contribute to this manual page, making it more useful for everyone. Send your example in an email to the
email address at the end of this manual page.

CONVERTING FILE FORMATS
The simplest of the things srec_cat(1) can do is convert from one EPROM file format to another. Please
keep in mind, as you read this section, that you can do many of these things simultaneously in one
command. They are only broken out separately to make them easier to understand.

Intel to Motorola
One of the simplest examples is converting files from Intel hex format to Motorola S-Record format:

srec_cat intel-file —intel -o srec-file

Note that the format specifier immediately follows the name of the file it is describing. Pick any two
formats that SRecord understands, and it can convert between all of them. (Except the assembler, BASIC,
C and FPGA outputs which are write only.)

Motorola to Intel
Converting the other way is just as simple:

srec_cat srec-file —o intel-file —intel
The default format is Motorola S-Record format, so it does not need to be specified after the file name.

Different Shapes of the Same Format
It is regrettably common that some addle-pated EPROM programmers only implement a portion of the
specification used to represent their hex files. For example, some compilers produce “s19” Motorola data
(that is, S1 data records with S9 start records, 16 bit address fields) which would be OK except that some
blockhead EPROM programmers insist on “s37” Motorola data (that is, S3 data records with S7 start
records, 32 bit address fields).

It is possible to convert from one Motorola shape to another using the —Address-Length option:
srec_cat short.srec -o long.srec —address—-length=4
This command says to use four byte (32-bit) addresses on output.

This section also applies to Intel hex files, as they, too, have the ability to select from a variety of address
widths. To convert from one Intel shape to another using the same —Address-Length option:

Reference Manual SRecord 38

srec_examples(1) i srec_examples(1)

srec_cat i32.hex -o il6.hex -—-address-length=3

This command says to use “i16hex” 20-bit segmented addresses on output. An address length of 4 is the
default (“i132hex” 32-bit linear addressing), and an address length of 2 would request “i8hex” 16-bit
addressing.

Line Lengths
From time to time you will come across a feeble-minded EPROM programmer that can’t cope with long
text lines, they assume that there will only ever be 46 characters per line and barf when they see the default
line lengths that srec_cat(1) writes (or worse, get a stack scribble and crash).

The Motorola S-record format definition permits up to 255 bytes of payload, or lines of 574 characters, plus
the line termination. All EPROM programmers should have sufficiently large line buffers to cope with
records this big. Few do.

The —line-length option may be used to specify the maximum line length (not including the newline) to be
used on output. For example, 16 byte payloads for Motorola hex

srec_cat long.srec -o short.sl9 -line-length=46

The line length option interacts with the address length option, so some tinkering to optimize for your
particular situation many be necessary.

Output Block Size
Every once in a while you will come across an ancient daft EPROM programmer that can’t cope with long
data records, they assume that there will only ever be at most 16 bytes of data per record, and barf when
they see the default 32 byte payloads that srec_cat(1) writes (or worse, the buffer over-run causes a tall
grass walk that scribbles on your EPROM).

The Intel hex format definition permits up to 255 bytes of payload data per record. All EPROM
programmers should have sufficiently large data buffers to cope with records this big. Good luck with that.

The —Output-Block-Size option may be used to specify the record data size to be used on output. For
example, Intel hex with 16 byte payloads:

srec_cat long.srec -o short.hex —-intel -obs=16
Be careful not to put the —obs option between the output file name and the format specifier.

Just the Data, Please
There are some bonehead EPROM programmers which can only cope with data records, and are unable to
cope with header records or execution start address records. If you have this problem, the —data-only
option can be used to suppress just about everything except the data. The actual effect depends on the
format, of course, because some don’t have these features anyway.

The —data-only option is short hand. There are four properties which may be —disabled or —enabled
separately. See the srec_cat(1) man page for a description of the —disabled and —enabled options.

For example, your neanderthal EPROM programmer requires Motorola hex with header records (S0), but
without data count (S5) records. Not using the —data-only option has it barf on the data count record, but
using the —data-only option has it barf on the missing header record. Using the —disable=data-count
option would leave the header record intact while suppressing the data count record.

Data Headers
The srec_cat(1) command always tries to pass through header records unchanged, whenever they are
present. It even tries preserve them across file format changes, to the limit the file formats are capable of.

If there is no file header record and you would like to add one, or you wish to override an existing file
header record, use the —header=string option. You will need to quote the string (to insulate it from the
shell) if it contains spaces or shell meta-characters.

Execution Start Addresses
The srec_cat(1) command always tries to pass through execution start addresses (typically occurring at the
end of the file), whenever they are present. They are adjusted along with the data records by the —offset
filter. It even tries preserve them across file format changes, to the limit the file formats are capable of.

Reference Manual SRecord 39

srec_examples(1) i srec_examples(1)

If there is no execution start address record and you would like to add one, or you wish to override an
existing execution start address record, use the —execution-start-address=number option.

Please note: the execution start address is a different concept than the first address in memory of your data.
Think of it as a “goto” address to be jumped to by the monitor when the hex load is complete. If you want
to change where your data starts in memory, use the —offset filter.

Fixing Checksums
Some embedded firmware developers are saddled with featherbrained tools which produce incorrect
checksums, which the more vigilant models of EPROM programmer will not accept.

To fix the checksums on a file, use the —ignore-checksums option. For example:
srec_cat broken.srec -ignore-checksums -o fixed.srec

The checksums in broken.srec are parsed (it is still and error if they are absent) but are not checked. The
resulting fixed.srec file has correct checksums. The —ignore-checksums option only applies to input.

This option may be used on any file format which has checksums, including Intel hex.

Discovering Mystery Formats
See the What Format Is This? section, below, for how to discover and convert mystery EPROM load file
formats.

BINARY FILES
It is possible to convert to and from binary files. You can even mix binary files and other formats together
in the same srec_cat(1) command.

Writing Binary Files
The simplest way of reading a hex file and converting it to a binary file looks like this:

srec_cat fred.hex -o fred.bin -binary
This reads the Motorola hex file fred.srec and writes it out to the fred.bin as raw binary.

Note that the data is placed into the binary file at the byte offset specified by the addresses in the hex file.
If there are holes in the data they are filled with zero. This is, of course, common with linker output where
the code is placed starting at a particular place in memory. For example, when you have an image that
starts at 0x100000, the first IMB of the output binary file will be zero.

You can automatically cancel this offset using a command like
srec_cat fred.hex -offset — -minimum-addr fred.hex -o fred.bin

The above command works by offsetting the fred.hex file lower in memory by the least address in the
fred.hex file’s data.

See also the srec_binary(5) man page for additional detail.

Reading Binary Files
The simplest way of reading a binary file and converting it looks like this

srec_cat fred.bin -binary -o fred.srec
This reads the binary file fred.bin and writes all of its data back out again as a Motorola S-Record file.

Often, this binary isn’t exactly where you want it in the address space, because it is assumed to reside at
address zero. If you need to move it around use the —offset filter.

srec_cat fred.bin -binary -offset 0x10000 -o fred.srec

You also need to avoid file “holes” which are filled with zero. You can use the —crop filter, of you could
use the —unfill filter if you don’t know exactly where the data is.

srec_cat fred.bin -binary -unfill 0x00 512 -o fred.srec

The above command removes runs of zero bytes that are 512 bytes long or longer. If your file contains
1GB of leading zero bytes, this is going to be slow, it may be better to use the dd(1) command to slice and
dice first.

Reference Manual SRecord 40

srec_examples(1) i srec_examples(1)

JOINING FILES TOGETHER
The srec_cat command takes its name from the UNIX cat(1) command, which is short for “catenate” or “to
join”. The srec_cat command joins EPROM load files together.

All In One
Joining EPROM load files together into a single file is simple, just name as many files on the command line
as you need:

srec_cat infilel infile2 —o outfile

This example is all Motorola S-Record files, because that’s the default format. You can have multiple
formats in the one command, and srec_cat(1) will still work. You don’t even have to output the same
format:

srec_cat infile]l —-spectrum infile2 —needham \
—-o outfile —signetics

These are all ancient formats, however it isn’t uncommon to have to mix and match Intel and Motorola
formats in the one project.

Overlaying two data files
It is common to want to “join” two hex files together, without any changes of address. on the assumption
neither file intersects with the other. This is a simple “layers”, it is quite common for linkers to output the
main code, and then a whole bunch of relocation and jump destination, by writing a two layered files.
srec_cat one.he two.hex -o three.hex
Almost always you see an error

srec_cat: two.srec: 49282: contradictory 0x00000000 value (previous = 0x00, this one = 0x80)

This means that the files actually intersect, they try to set the same location. You can turn the error into a
warning, using the —contradictory-bytes=warning command line option. But this will probably generate
a bazillion warnings.

The necessary step is to crop the first file, to avoid the regions the second file is going o be overwriting.

srec_cat \
one.srec —exclude —-within two.srec \
two.srec —-exclude -within one.srec \
-0 three.hex

Depending on your linker this will have no errors (but if it wants another layer, more jiggery-pokery is
required).

Filtering After Joining
There are times when you want to join two sets of data together, and then apply a filter to the joined result.
To do this you use parentheses.

srec_cat \

l(l \
infile —exclude OxFFFO0 0x10000 \
—generate OxFFF0 OxFFF8 -repeat-string ’Bananas '

l)l

—length-b-e OxFFF8 4

—checksum—-neg-b-e OxFFFC 4 4

—-o outfile

\
\
\
\

The above example command catenate an input file (with the generated data area excluded) with a constant
string. This catenated input is then filtered to add a 4-byte length, and a 4-byte checksum.

Joining End-to-End
All too often the address ranges in the EPROM load files will overlap. You will get an error if they do. If

both files start from address zero, because each goes into a separate EPROM, you may need to use the
offset filter:

Reference Manual SRecord 41

srec_examples(1) i srec_examples(1)

srec_cat infilel \
infile2 —offset 0x80000 \
—-o outfile

Sometimes you want the two files to follow each other exactly, but you don’t know the offset in advance:

srec_cat infilel \
infile2 —offset -maximum-addr infilel \
—-o outfile

Notice that where the was a number (0x80000) before, there is now a calculation (—maximum-addr infilel).
This is possible most places a number may be used (also —minimum-addr and —range).

CROPPING THE DATA
It is possible to copy an EPROM load file, selecting addresses to keep and addresses to discard.

What To Keep
A common activity is to crop your data to match your EPROM location. Your linker may add other junk
that you are not interested in, e.g. at the RAM location. In this example, there is a IMB EPROM at the
2MB boundary:

srec_cat infile —crop 0x200000 0x300000 \
—-o outfile

The lower bound for all address ranges is inclusive, the upper bound is exclusive. If you subtract them, you
get the number of bytes.

Address Offset
Just possibly, you have a moronic EPROM programmer, and it barfs if the EPROM image doesn’t start at
zero. To find out just where is does start in memory, use the srec_info(1) command:

$ srec_info example.srec

Format: Motorola S—-Record

Header: extra-whizz tool chain linker
Execution Start Address: 0x00200000
Data: 0x200000 - Ox32AAEF

$

Rather than butcher the linker command file, just offset the addresses:

srec_cat infile —crop 0x200000 0x300000 -offset —0x200000 \
—-o outfile

Note that the offset given is negative, it has the effect of subtracting that value from all addresses in the
input records, to form the output record addresses. In this case, shifting the image back to zero.

This example also demonstrates how the input filters may be chained together: first the crop and then the
offset, all in one command, without the need for temporary files.

If all you want to do is offset the data to start from address zero, this can be automated, so you don’t have to
know the minimum address in advance, by using srec_cat’s ability to calculate some things on the
command line:

srec_cat infile —offset — -minimum-addr infile \
—-o outfile

Note the spaces either side of the minus sign, they are mandatory.

What To Throw Away
There are times when you need to exclude an small address range from an EPROM load file, rather than
wanting to keep a small address range. The —exclude filter may be used for this purpose.

For example, if you wish to exclude the address range where the serial number of an embedded device is
kept, say 0x20 bytes at 0x100, you would use a command like this:

srec_cat input.srec —-exclude 0x100 0x120 -o output.srec

Reference Manual SRecord 42

srec_examples(1) i srec_examples(1)

The output.srec file will have a hole in the data at the necessary locations.

Note that you can have both —crop and —exclude on the same command line, whichever works more
naturally for your situation.

Discontinuous Address Ranges
Address ranges don’t have to be a single range, you can build up an address range using more than a single
pair.

srec_cat infile —crop 0x100 0x200 0x1000 0x1200 \
—-o outfile

This filter results in data from 0x100..0x1FF and data from 0x1000..0x1200 to pass through, the rest is
dropped. This is is more efficient than chaining a —crop and an —exclude filter together.

MOVING THINGS AROUND
It is also possible to change the address of data records, both forwards and backwards. It is also possible
rearrange where data records are placed in memory.

Offset Filter
The —offset=number filter operates on the addresses of records. If the number is positive the addresses
move that many bytes higher in memory, negative values move lower.

srec_cat infile —crop 0x200000 0x300000 -offset —0x200000 \
—-o outfile

The above example moves the 1MB block of data at 0x200000 down to zero (the offset is negative) and
discards the rest of the data.

Byte Swapping
There are times when the bytes in the data need to be swapped, converting between big-endian and little-
endian data usually.

srec_cat infile ~-byte-swap 4 -o outfile

This reverses bytes in 32 bit values (4 bytes). The default, if you don’t supply a width, is to reverse bytes in
16 bit values (2 bytes). You can actually use any weird value you like, it doesn’t even have to be a power of
2. Perhaps 64 bits (8 bytes) may be useful one day.

Binary Output
You need to watch out for binary files on output, because the holes are filled with zeros. Your 100kB
program at the top of 32-bit addressed memory will make a 4GB file. See srec_binary(5) for how
understand and avoid this problem, usually with the —offset filter.

Splitting an Image
If you have a 16-bit data bus, but you are using two 8-bit EPROMs to hold your firmware, you can generate
the even and odd images by using the —SPlit filter. Assuming your firmware is in the firmware.hex file, use
the following:

srec_cat firmware.hex -split 2 0 -o firmware.even.hex
srec_cat firmware.hex -split 2 1 -o firmware.odd.hex

This will result in the two necessary EPROM images. Note that the output addresses are divided by the
split multiple, so if your EPROM images are at a particular offset (say 0x10000, in the following example),
you need to remove the offset, and then replace it...

srec_cat firmware.hex \
-offset —-0x10000 -split 2 0 \
-offset 0x10000 -o firmware.even.hex
srec_cat firmware.hex \
-offset —-0x10000 -split 2 1 \
-offset 0x10000 -o firmware.odd.hex

Note how the ability to apply multiple filters simplifies what would otherwise be a much longer script.

Reference Manual SRecord 43

srec_examples(1) i srec_examples(1)

Striping
A second use for the —SPlit filter is memory striping.

You don’t have to split into byte-wide parts, you can choose other sizes. It is common to want to convert
32-bit wide data into two set of 16-bit wide data.

srec_cat firmware.hex -split 4 0 2 -o firmware.Ol.hex
srec_cat firmware.hex -split 4 2 2 -o firmware.23.hex

This is relatively simple to understand, but you can use even wider stripes.

In this next example, the hardware requires that 512-byte blocks alternate between 4 EPROMs. Generating
the 4 images would be done as follows:

srec_cat firmware.hex -split 0x800 0x000 0x200 -o firmware.O.hex
srec_cat firmware.hex -split 0x800 0x200 0x200 -o firmware.l.hex
srec_cat firmware.hex -split 0x800 0x400 0x200 -o firmware.2.hex
srec_cat firmware.hex -split 0x800 0x600 0x200 -o firmware.3.hex

Asymmetric Striping
A more peculiar example of striping is the Microchip dsPIC33F microcontroller, that has a weird memory
storage pattern and they are able to store 3 bytes in an address that should only contain 2 bytes. The result
is a hex file that has zero-filled the top byte (little-endian), and all addresses are doubled from what they are
in the chip. Here is an example:

5$1130000000102000405060008090A000CODOE0O098
5$1130010101112001415160018191A001C1D1EOOCS
51130020202122002425260028292A002C2D2EOQOF8
51130030303132003435360038393A003C3D3E0028

To get rid of the 00 padding bytes, leaving only the 3/4 significant bytes, you also use the split filter, with
its additional width argument, like this:

srec_cat example.srec -split 4 0 3 -o no_dross.srec
This results in a file with the 00 padding bytes removed. It looks like this:

5$113000000010204050608090A0C0OD0OE1011121451
S1130010151618191A1C1D1E2021222425262829EC
S11300202A2C2D2E30313234353638393A3C3D3E87

Notice how the addresses are 3/4 the size, as well. You can reverse this using the —unsplit and —fill=0
filters.

Unsplit ING Images
The unsplit filter may be used to reverse the effects of the split filter. Note that the address range is
expanded leaving holes between the stripes. By using all the stripes, the complete input is reassembled,
without any holes.

srec_cat -o firmware.hex \
firmware.even.hex —-unsplit 2 0 \
firmware.odd.hex -unsplit 2 1

The above example reverses the previous 16-bit data bus example. In general, you unsplit with the same
parameters that you split with.

FILLING THE BLANKS
Often EPROM load files will have “holes” in them, places where the compiler and linker did not put
anything. For some purposes this is OK, and for other purposes something has to be done about the holes.

The Fill Filter
It is possible to fill the blanks where your data does not lie. The simplest example of this fills the entire
EPROM:

srec_cat infile —£i11 0x00 0x200000 0x300000 -o outfile

Reference Manual SRecord 44

srec_examples(1) i srec_examples(1)

This example fills the holes, if any, with zeros. You must specify a range — with a 32-bit address space,
filling everything generates huge load files.

If you only want to fill the gaps in your data, and don’t want to fill the entire EPROM, try:
srec_cat infile ~£i11 0x00 -over infile —o outfile

This example demonstrates the fact that wherever an address range may be specified, the —over and
—within options may be used.

Unfilling the Blanks
It is common to need to “unfill” an EPROM image after you read it out of a chip. Usually, it will have had
all the holes filled with OxFF (areas of the EPROM you don’t program show as OxFF when you read them
back).

To get rid of all the OxFF bytes in the data, use this filter:
srec_cat infile —unfill OxFF -o outfile

This will get rid of all the OXxFF bytes, including the ones you actually wanted in there. There are two ways
to deal with this. First, you can specify a minimum run length to the un-fill:

srec_cat infile —unfill OxFF 5 -o outfile

This says that runs of 1 to 4 bytes of OxFF are OK, and that a hole should only be created for runs of 5 or
more OxFF bytes in a row. The second method is to re-fill over the intermediate gaps:

srec_cat outfile —£ill O0xFF -over outfile \
—-o outfile2

Which method you choose depends on your needs, and the shape of the data in your EPROM. You may
need to combine both techniques.

Address Range Padding
Some data formats are 16 bits wide, and automatically fill with OXxFF bytes if it is necessary to fill out the
other half of a word which is not in the data. If you need to fill with a different value, you can use a
command like this:

srec_cat infile —£i11 0x0A \

-within infile —range-padding 2 \

—-o outfile
This gives the fill filter an address range calculated from details of the input file. The address range is all
the address ranges covered by data in the infile, extended downwards (if necessary) at the start of each sub-
range to a 2 byte multiple and extended upwards (if necessary) at the end of each sub-range to a 2 byte
multiple. This also works for larger multiples, like 1kB page boundaries of flash chips. This address range
padding works anywhere an address range is required.

Fill with Copyright
It is possible to fill unused portions of your EPROM with a repeating copyright message. Anyone trying to
reverse engineer your EPROMs is going to see the copyright notice in their hex editor.

This is accomplished with two input sources, one from a data file, and one which is generated on-the-fly.

srec_cat infile \
—generate ' (! 0 0x100000 -minus -within infile ")’ \
-repeat-string ’Copyright (C) 1812 Tchaikovsky. ' \
—-o outfile

Notice the address range for the data generation: it takes the address range of your EPROM, in this case
IMB starting from 0, and subtracts from it the address ranges used by the input file.

If you want to script this with the current year (because 1812 is a bit out of date) use the shell’s output
substitution (back ticks) ability:

srec_cat infile \

Reference Manual SRecord 45

srec_examples(1) i srec_examples(1)

—generate ' (* 0 0x100000 -minus -within infile ')’ \
-repeat-string "Copyright (C) ‘date +%Y' Tchaikovsky. " \
—-o outfile
The string specified is repeated over and over again, until it has filled all the holes.
Obfuscating with Noise
Sometimes you want to fill your EPROM images with noise, to conceal where the real data stops and starts.
You can do this with the —random-fill filter.
srec_cat infile ~random-£fill 0x200000 0x300000 \
—-o outfile
It works just like the —fill filter, but uses random numbers instead of a constant byte value.

Fill With 16-bit Words
When filling the image with a constant byte value doesn’t work, and you need a constant 16-bit word value

instead, use the —repeat-data generator, which takes an arbitrarily long sequence of bytes to use as the fill
pattern:

srec_cat infile \
—generator ' (’ 0x200000 0x300000 -minus -within infile ")’ \

-repeat—-data 0x1B 0x08 \
—-o outfile
Notice how the generator’s address range once again avoids the address ranges occupied by the infile’s data.
You have to get the endian-ness right yourself.

INSERTING CONSTANT DATA

From time to time you will want to insert constant data, or data not produced by your compiler or
assembler, into your EPROM load images.

Binary Means Literal
One simple way is to have the desired information in a file. To insert the file’s contents literally, with no

format interpretation, use the binary input format:

srec_cat infile ~binary -o outfile
It will probably be necessary to use an offset filter to move the data to where you actually want it within the
image:

srec_cat infile -binary -offset 0x1234 -o outfile
It is also possible to use the standard input as a data source, which lends itself to being scripted. For
example, to insert the current date and time into an EPROM load file, you could use a pipe:

date | srec_cat - -bin -offset OxFFE3 -o outfile

The special file name “~” means to read from the standard input. The output of the date command is
always 29 characters long, and the offset shown will place it at the top of a 64KB EPROM image.

Repeating Once
The Fill with Copyright section, above, shows how to repeat a string over and over. We can use a single
repeat to insert a string just once.
srec_cat —generate OxFFE3 0x10000 -repeat-string "‘date*" \
—-o outfile

Notice how the address range for the data generation exactly matches the length of the date(1) output size.
You can, of course, add your input file to the above srec_cat(1) command to catenate your EPROM image

together with the date and time.

Inserting A Long
Another possibility is to add the Subversion commit number to your EPROM image. In this example, we

are inserting it a a 4-byte little-endian value at address 0x0008. The Subversion commit number is in the
$version shell variable in this example:

Reference Manual SRecord 46

srec_examples(1) i srec_examples(1)

srec_cat —-generate 0x0008 0x000C -constant-l-e $version 4 \
infile —exclude 0x0008 0x000C \
—-o outfile

Note that we use a filter to ensure there is a hole in the input where the version number goes, just in case
the linker put something there.

DATA ABOUT THE DATA
It is possible to add a variety of data about the data to the output.

Checksums
The —checksum-negative-big-endian filter may be used to sum the data, and then insert the negative of the

sum into the data. This has the effect of summing to zero when the checksum itself is summed across,
provided the sum width matches the inserted value width.

srec_cat infile \
—-crop 0 OxFFFFFC \
-random-fill 0 OxXFFFFFC \
—checksum-neg-b-e OXFFFFFC 4 4 \
—-o outfile

In this example, we have an EPROM in the lowest megabyte of memory. The —crop filter ensures we are
only summing the data within the EPROM, and not anywhere else. The —random-fill filter fills any holes
left in the data with random values. Finally, the —checksum-neg-b-e filter inserts a 32 bit (4 byte)

checksum in big-endian format in the last 4 bytes of the EPROM image. Naturally, there is a little-endian
version of this filter as well.

Your embedded code can check the EPROM using C code similar to the following:

unsigned long *begin = (unsigned long *)O0;

unsigned long *end = (unsigned long *)0x100000;

unsigned long sum = 0;

while (begin < end)
sum += *begin++;

if (sum != 0)
{

Oops
}

The —checksum-bitnot-big-endian filter is similar, except that summing over the checksum should yield a
value of all-one-bits (—1). For example, using shorts rather than longs:

srec_cat infile \
—-crop 0 OXFFFFFE \
—-fill 0xCC 0x00000 OxXFFFFFE \
—checksum-neg-b-e OXFFFFFE 2 2 \
—-o outfile

Assuming you chose the correct endian-ness filter, your embedded code can check the EPROM using C
code similar to the following:

unsigned short *begin = (unsigned short *)O0;
unsigned short *end = (unsigned short *)0x100000;
unsigned short sum = 0;
while (begin < end)
sum += *begin++;
if (sum != OXFFFF)
{
Oops
}

There is also a —checksum-positive-b-e filter, and a matching little-endian filter, which inserts the simple

Reference Manual SRecord 47

srec_examples(1) i srec_examples(1)

sum, and which would be checked in C using an equality test.

srec_cat infile \
—-crop 0 OXFFFFFF \
—-fill 0x00 0x00000 OxXFFFFFF \
—checksum-neg-b-e OXFFFFFF 1 1 \
—-o outfile

Assuming you chose the correct endian-ness filter, your embedded code can check the EPROM using C
code similar to the following:

unsigned char *begin = (unsigned char *)O0;
unsigned char *end = (unsigned char *)O0xFFFFF;
unsigned char sum = 0;
while (begin < end)
sum += *begin++;
if (sum != *end)
{
Oops
}

In the 8-bit case, it doesn’t matter whether you use the big-endian or little-endian filter.

Quick Hex-Dump
You can look at the checksum of your data, by using the “hex-dump” output format. This is useful for
looking at calculated values, or for debugging an srec_cat(1) command before immortalizing it in a script.

srec_cat infile \
-crop 0 0x10000 \
-fill OxFF 0x0000 0x10000 \
—checksum-neg-b-e 0x10000 4 \
—-crop 0x10000 0x10004 \

-0 — —hex-dump

This command reads in the file, checksums the data and places the checksum at 0x10000, crops the result to
contain only the checksum, and then prints the checksum on the standard output in a classical hexadecimal

[Tk

dump format. The special file name “~” means “the standard output” in this context.

Cyclic Redundancy Checks
The simple additive checksums have a number of theoretical limitations, to do with errors they can and
can’t detect. The CRC methods have fewer problems.

srec_cat infile
—crop 0 OXFFFFFC
-fill 0x00 0x00000 OxXFFFFFC
—crc32-b-e OxFFFFFC
—-o outfile

\
\
\
\

In the above example, we have an EPROM in the lowest megabyte of memory. The —crop filter ensures we
are only summing the data within the EPROM, and not anywhere else. The —fill filter fills any holes left in
the data. Finally, the —checksum-neg-b-e filter inserts a 32 bit (4 byte) checksum in big-endian format in
the last 4 bytes of the EPROM image. Naturally, there is a little-endian version of this filter as well.

The checksum is calculated using the industry standard 32-bit CRC. Because SRecord is open source, you
can always read the source code to see how it works. There are many non-GPL versions of this code
available on the Internet, and suitable for embedding in proprietary firmware.

There is also a 16-bit CRC available.

srec_cat infile \
—-crop 0 OXFFFFFE \
-fill 0x00 0x00000 OXFFFFFE \

Reference Manual SRecord 48

srec_examples(1) i srec_examples(1)

—-crclé6-b-e OxXFFFFFE \
—-o outfile

The checksum is calculated using the CCITT formula. Because SRecord is open source, you can always
read the source code to see how it works. There are many non-GPL version of this code available on the
Internet, and suitable for embedding in proprietary firmware.

You can look at the CRC of your data, by using the “hex-dump” output format.

srec_cat infile \
-crop 0 0x10000 \
-fill OxFF 0x0000 0x10000 \
-crcl6e-b-e 0x10000 \
—crop 0x10000 0x10002 \

-0 — —hex—-dump

This command reads in the file, calculates the CRC of the data and places the CRC at 0x10000, crops the
result to contain only the CRC, and then prints the checksum on the standard output in a classical
hexadecimal dump format.

Where Is My Data?
There are several properties of your EPROM image that you may wish to insert into the data.

srec_cat infile -minimum-b-e OxFFFE 2 -o outfile

The above example inserts the minimum address of the data (low water) into the data, as two bytes in big-
endian order at address OXFFFE. This includes the minimum itself. If the data already contains bytes at the
given address, you need to use an exclude filter. The number of bytes defaults to 4.

There is also a —minimume-l-e filter for inserting little-endian values, and two more filters called
—exclusive-minimum-b-e and —exclusive-minimume-I-e that do not include the minimum itself in the
calculation of the minimum data address.

srec_cat infile -maximum-b-e OxXFFFFFC 4 -o outfile

The above example inserts the maximum address of the data (high water + 1, just like address ranges) into
the data, as four bytes in big-endian order at address OxFFFFFC. This includes the maximum itself. If the
data already contains bytes at the given address, you need to use an —exclude filter. The number of bytes
defaults to 4.

There is also a —-maximum-l-e filter for inserting little-endian values, and two more filters called
—exclusive-maximum-b-e and —exclusive-maximume-1-e that do not include the maximum itself in the
calculation of the maximum data address.

srec_cat infile ~length-b-e OXFFFFFC 4 -o outfile

The above example inserts the length of the data (high water + 1 — low water) into the data, as four bytes in
big-endian order at address OXFFFFFC. This includes the length itself. If the data already contains bytes at
the length location, you need to use an —exclude filter. The number of bytes defaults to 4.

There is also a —length-l-e filter for inserting a little-endian length, and the —exclusive-length-b-e and
—exclusive-length-l-e filters that do not include the length itself in the calculation.

What Format Is This?
You can obtain a variety of information about an EPROM load file by using the srec_info(1) command. For

example:

$ srec_info example.srec
Format: Motorola S—-Record
Header: "http://srecord.sourceforge.net/"
Execution Start Address: 00000000
Data: 0000 - 0122
0456 - OFFF

Reference Manual SRecord 49

srec_examples(1) i srec_examples(1)

This example shows that the file is a Motorola S-Record. The text in the file header is printed, along with
the execution start address. The final section shows the address ranges containing data (the upper bound of
each subrange is inclusive, rather than the exclusive form used on the command line.

$ srec_info some-weird-file.hex -—guess
Format: Signetics
Data: 0000 - 0122
0456 - OFFF
$

The above example guesses the EPROM load file format. It isn’t infallible but it usually gets it right. You
can use —guess anywhere you would give an explicit format, but it tends to be slower and for that reason is
not recommended. Also, for automated build systems, you want hard errors as early as possible; if a file
isn’t in the expected format, you want it to barf.

MANGLING THE DATA

It is possible to change the values of the data bytes in several ways.
srec_cat infile —and 0xFO0 -o outfile

The above example performs a bit-wise AND of the data bytes with the 0xFO mask. The addresses of
records are unchanged. I can’t actually think of a use for this filter.

srec_cat infile —or 0xO0F -o outfile

The above example performs a bit-wise OR of the data bytes with the OxOF bits. The addresses of records
are unchanged. I can’t actually think of a use for this filter.

srec_cat infile —xor 0xA5 -o outfile

The above example performs a bit-wise exclusive OR of the data bytes with the 0xAS5 bits. The addresses
of records are unchanged. You could use this to obfuscate the contents of your EPROM.

srec_cat infile —not -o outfile
The above example performs a bit-wise NOT of the data bytes. The addresses of records are unchanged.
Security by obscurity?
COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 50

srec_info(1) General Commands Manual srec_info(1)

NAME

srec_info — information about EPROM load files

SYNOPSIS
srec_info [option...] filename...
srec_info —Help
srec_info —VERSion

DESCRIPTION
The srec_info program is used to obtain input about EPROM load files. It reads the files specified, and then
presents statistics about them. These statistics include: the file header if any, the execution start address if
any, and the address ranges covered by the data if any.

If there is binary data the header, it will be presented using the URL encoding that uses % followed by two
hexadeimal characters. For example a backspace would be encoded as “%08”. (This is symmetric with the
srec_cat --header opion).

INPUT FILE SPECIFICATIONS
Input may be qualified in two ways: you may specify a data file or a data generator. format and you may
specify filters to apply to them. An input file specification looks like this:
data-file [filter ...]
data-generator [filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looks like this:
filename [format][—ignore-checksums]
The default format is Motorola S-Record format, but many others are also understood.

Data Generators
It is also possible to generate data, rather than read it from a file. You may use a generator anywhere you
could use a file. An input generator specification looks like this:
—GENerate address-range —data-source
Generators include random data and various forms of constant data.

Common Manual Page
See srec_input(1) for complete details of input specifiers. This description is in a separate manual page
because it is common to more than one SRecord command.

OPTIONS

The following options are understood:

@filename
The named text file is read for additional command line arguments. Arguments are separated by
white space (space, tab, newline, etc). There is no wildcard mechanism. There is no quoting
mechanism. Comments, which start with *# and extend to the end of the line, are ignored.
Blank lines are ignored.

—Help

Provide some help with using the srec_info program.

—IGnore_Checksums
The —IGnore-Checksums option may be used to disable checksum validation of input files, for
those formats which have checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if they are missing) but their values are not checked. Used after an
input file name, the option affects that file alone; used anywhere else on the command line, it
applies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address order. Only one warning is issued per input file. This is the default.

Reference Manual SRecord 51

srec_info(1) General Commands Manual srec_info(1)

Note: the output of srec_cat(1) is always in this order.

Note: This option must be used before the input file. This is because if there are several files on
the command line, each may need different settings. The setting remains in force until the next
—Disable_Sequence_Warnings option.

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
strictly ascending address order.

Note: This option must be used before the offending input file. This is because if there are
several files on the command line, each may need different settings. The setting remains in force
until the next —Ensable_Sequence_Warnings option.

—redundant-bytes=value
Use this option to permit a file to contain redundant values for some memory locations. The
default is for this condition to be a warning.

ignore
No warning or error is issued whena redundant settings are detected.
warning

A warning is issued when a redundant settings are observed, the warning includes the
problematic address.

error
A fatal error is issued when a redundant settings are observed, the fatal error message
includes the problematic address and byte value.

—contradictory-bytes=value

Use this option to permit a file to contain contradictory values for some memory locations. The

last value in the input(s) will be used. The default is for this condition to be a fatal error.

ignore
No warning or error is issued when contradictory setting is detected.

warning
A warning is issued when a vontradictory settings are observed, the warning includes the
problematic address, and values.

error
A fatal error is issued when contradictory settings are observed, the fatal error message
includes the problematic address and byte values.

-VERSion
Print the version of the srec_info program being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “~help”, “~HEL” and “—h” are all interpreted to mean the —Help option. The
argument “—hlp” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_info are long, this means
ignoring the extra leading “~". The “——option=value” convention is also understood.

Reference Manual SRecord 52

srec_info(1) General Commands Manual srec_info(1)

EXIT STATUS
The srec_info command will exit with a status of 1 on any error. The srec_info command will only exit
with a status of 0 if there are no errors.

COPYRIGHT
srec_info version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_info program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_info
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_info —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 53

srec_input(1) General Commands Manual srec_input(1)

NAME

srec_input — input file specifications

SYNOPSIS

srec_* filename [format]

DESCRIPTION
This manual page describes the input file specifications for the srec_cat(1), srec_cmp(1) and srec_info(1)
commands.

Input files may be qualified in a number of ways: you may specify their format and you may specify filters
to apply to them. An input file specification looks like this:
filename [format][—ignore-checksums][filter ...]

[T3E L)

The filename may be specified as a file name, or the special name which is understood to mean the

standard input.

Grouping with Parentheses
There are some cases where operator precedence of the filters can be ambiguous. Input specifications may
also be enclosed by (parentheses) to make grouping explicit. Remember that the parentheses must be
separate words, i.e. surrounded by spaces, and they will need to be quoted to get them past the shell’s
interpretation of parentheses.

Those Option Names Sure Are Long
All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case
letters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “~help”, “~HEL” and “—h” are all interpreted to mean the —Help option. The
argument “—hlp” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_input are long, this means
ignoring the extra leading “~". The “——option=value” convention is also understood.

File Formats
The format is specified by the argument after the file name. The format defaults to Motorola S-Record if
not specified. The format specifiers are:

—Absolute_Object_Module_Format
This option says to use the Intel Absolute Object Module Format (AOMEF) to read the file. (See
srec_aomf(S) for a description of this file format.)

—Ascii_Hex
This option says to use the Ascii-Hex format to read the file. See srec_ascii_hex(5) for a
description of this file format.

—Atmel_Generic
This option says to use the Atmel Generic format to read the file. See srec_atmel_genetic(5) for
a description of this file format.

—Binary
This option says the file is a raw binary file, and should be read literally. (This option may also
be written —Raw.) See srec_binary(5) for more information.

-B-Record
This option says to use the Freescale MC68EZ328 Dragonball bootstrap b-record format to read
the file. See srec_brecord(S) for a description of this file format.

Reference Manual SRecord 54

srec_input(1) General Commands Manual srec_input(1)

—COsmac
This option says to use the RCA Cosmac Elf format to read the file. See srec_cosmac(5) for a
description of this file format.

—Dec_Binary
This option says to use the DEC Binary (XXDP) format to read the file. See srec_dec_binary(5)
for a description of this file format.

—Elektor_Monitor52
This option says to use the EMONS52 format to read the file. See srec_emon52(5) for a
description of this file format.

—FAIrchild
This option says to use the Fairchild Fairbug format to read the file. See srec_fairchild(S) for a
description of this file format.

—Fast_Load
This option says to use the LSI Logic Fast Load format to read the file. See srec_fastload(5) for
a description of this file format.

—Formatted_Binary
This option says to use the Formatted Binary format to read the file. See
srec_formatted_binary(5) for a description of this file format.

—Four_Packed_Code
This option says to use the FPC format to read the file. See srec_fpc(5) for a description of this
file format.

—Guess This option may be used to ask the command to guess the input format. This is slower than
specifying an explicit format, as it may open and scan and close the file a number of times.

-HEX_Dump
This option says to try to read a hexadecimal dump file, more or less in the style output by the
same option. This is not an exact reverse mapping, because if there are ASCII equivalents on the
right hand side, these may be confused for data bytes. Also, it doesn’t understand white space
representing holes in the data in the line.

-IDT This option says to the the IDT/sim binary format to read the file. See srec_id1(5) for a
description of this file format.

—Intel This option says to use the Intel hex format to read the file. See srec_intel(5) for a description of
this file format.

—INtel_HeX_16
This option says to use the Intel hex 16 (INHX16) format to read the file. See srec_intel16(5) for
a description of this file format.

-LOGIsim
This format is read and written by the open source Logisim program. See srec_logisim(5) for
more informatuion.

—Memory_Initialization_File
This option says to use the Memory Initialization File (MIF) format by Altera to read the file.
See srec_mif (5) for a description of this file format.

—Mips_Flash_Big_Endian

—Mips_Flash_Little_Endian
These options say to use the MIPS Flash file format to read the file. See srec_mips_flash (5) for a
description of this file format.

—MOS_Technologies
This option says to use the Mos Technologies format to read the file. See srec_mos_tech(5) for a
description of this file format.

Reference Manual SRecord 55

srec_input(1) General Commands Manual srec_input(1)

—Motorola [width]
This option says to use the Motorola S-Record format to read the file. (May be written —S-
Record as well.) See srec_motorola(5) for a description of this file format.

The optional width argument describes the number of bytes which form each address multiple.
For normal uses the default of one (1) byte is appropriate. Some systems with 16-bit or 32-bit
targets mutilate the addresses in the file; this option will correct for that. Unlike most other
parameters, this one cannot be guessed.

—MsBin This option says to use the Windows CE Binary Image Data Format to read the file. See
srec_msbin(5) for a description of this file format.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to read the file. See
srec_needham(5) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific format. See srec_os65v(5) for a description of this file
format.

—-PPB This option says to use the Stag Prom Programmer binary format. See srec_ppb(5) for a
description of this file format.

—-PPX This option says to use the Stag Prom Programmer hexadecimal format. See srec_ppx(5) for a
description of this file format.

—SIGnetics
This option says to use the Signetics format. See srec_spasm(5) for a description of this file
format.

—SPAsm
This is a synonym for the -SPAsm_Big_Endian option.

—SPAsm_Big_Endian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). See srec_spasm(5) for a description of this file format.

—SPAsm_Little_Endian
This option says to use the SPASM assembler output format, but with the data the other way
around.

—STewie
This option says to use the Stewie binary format to read the file. See srec_stewie(5) for a
description of this file format.

—Tektronix
This option says to use the Tektronix hex format to read the file. See srec_tektronix(5) for a
description of this file format.

—Tektronix_Extended
This option says to use the Tektronix extended hex format to read the file. See
srec_tektronix_extended(5) for a description of this file format.

—Texas_Instruments_Tagged
This option says to use the Texas Instruments Tagged format to read the file. See
srec_ti_tagged(5) for a description of this file format.

—Texas_Instruments_Tagged_16
This option says to use the Texas Instruments SDSMAC 320 format to read the file. See
srec_ti_tagged_16(5) for a description of this file format.

—Texas_Instruments_TeXT
This option says to use the Texas Instruments TXT (MSP430) format to read the file. See
srec_ti_txt(5) for a description of this file format.

Reference Manual SRecord 56

srec_input(1) General Commands Manual srec_input(1)

—-TRS80
This option says to use the Radio Shack TRS-80 object file format to read the file. See
srec_trs80(5) for a description of this file format.
-VMem
This option says to use the Verilog VMEM format to read the file. See srec_vmem(5) for a
description of this file format.
—-WILson
This option says to use the wilson format to read the file. See srec_wilson(5) for a description of
this file format.
Ignore Checksums
The —-IGnore-Checksums option may be used to disable checksum validation of input files, for those
formats which have checksums at all. Note that the checksum values are still read in and parsed (so it is
still an error if they are missing) but their values are not checked. Used after an input file name, the option
affects that file alone; used anywhere else on the command line, it applies to all following files.
—redundant-bytes=value
Use this option to permit a file to contain redundant values for some memory locations. The
default is for this condition to be a warning.
ignore
No warning or error is issued whena redundant settings are detected.
warning
A warning is issued when a redundant settings are observed, the warning includes the
problematic address.
error
A fatal error is issued when a redundant settings are observed, the fatal error message
includes the problematic address and byte value.
—contradictory-bytes=value
Use this option to permit a file to contain contradictory values for some memory locations. The
last value in the input(s) will be used. The default is for this condition to be a fatal error.
ignore
No warning or error is issued when contradictory setting is detected.
warning
A warning is issued when a vontradictory settings are observed, the warning includes the
problematic address, and values.
error
A fatal error is issued when contradictory settings are observed, the fatal error message
includes the problematic address and byte values.
Generators
It is also possible to generate data, rather than read it from a file. You may use a generator anywhere you
could use a file. An input generator specification looks like this:
—GENerate address-range —data-source

The —data-source may be one of the following:

—CONSTant byte-value

This generator manufactures data with the given byte value of the the given address range. It is
an error if the byte-value is not in the range 0..255.

For example, to fill memory addresses 100..199 with newlines (0x0A), you could use a command
like

srec_cat —generate 100 200 -constant 10 -o newlines.srec

Reference Manual SRecord 57

srec_input(1) General Commands Manual srec_input(1)

This can, of course, be combined with data from files.

—REPeat_Data byte-value...
This generator manufactures data with the given byte values repeating over the the given address
range. Itis an error if any of the the byte-values are not in the range 0..255.

For example, to create a data region with OxDE in the even bytes and OxAD in the odd bytes, use
a generator like this:

srec_cat —-generate 0x1000 0x2000 -repeat-data OxDE O0xAD

The repeat boundaries are aligned with the base of the address range, modulo the number of
bytes.

—REPeat_String text
This generator is almost identical to —repeat-data except that the data to be repeated is the text of
the given string.

For example, to fill the holes in an EPROM image eprom.srec with the text “Copyright (C) 1812
Tchaikovsky”, combine a generator and an —exclude filter, such as the command

If you need to inject binary data into the string (e.g. a terminating NUL character), use the URL
encoding that uses % followed by two hexadeimal characters. For example a backspace would be
encoded as “%08”.

srec_cat eprom.srec \
—generate 0 0x100000 \
-repeat-string ’Copyright (C) 1812 Tchaikovsky. ' \
—exclude -within eprom.srec \
-0 eprom.filled.srec

The thing to note is that we have two data sources: the eprom.srec file, and generated data over an
address range which covers first megabyte of memory but excluding areas covered by the
eprom.srec data.

—CONSTant_Little_Endian value width
This generator manufactures data with the given numeric value, of a given byte width, in little-
endian byte order. It is an error if the given value does not fit into the given byte width. It will
repeat over and over within the address range range.

For example, to insert a subversion commit number into 4 bytes at 0x0008..0x000B you would
use a command like

srec_cat —-generate 8 12 -constant-l-e S$VERSION 4 \
-0 version.srec

This generator is a convenience wrapper around the —REPeat_Data generator. It can, of course,
be combined with data from files.

—CONSTant_Big_Endian value width
As above, but using big-endian byte ordering.

Anything else will result in an error.

Input Filters
You may specify zero or more filters to be applied. Filters are applied in the order the user specifies.

—Adler_16_Big_Endian address
This filter may be used to insert an “Adler” 16-bit checksum of the data into the data. Two bytes,
big-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes are
processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You
almost always want to use the —fill filter before any of the Adler checksum filters. You will

Reference Manual SRecord 58

srec_input(1)

General Commands Manual srec_input(1)

receive a warning if the data presented for Adler checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—Adler_16_Little_Endian address

This filter may be used to insert an Adler 16-bit checksum of the data into the data. Two bytes, in
little-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes
are processed in ascending address order (nof in the order they appear in the input).

Note: If you have holes in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You
almost always want to use the —fill filter before any of the Adler filters. You will receive a
warning if the data presented for Adler checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—Adler_32_Big_Endian address

This filter may be used to insert a Adler 32-bit checksum of the data into the data. Four bytes,
big-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes are
processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You
almost always want to use the —fill filter before any of the Adler checksum filters. You will
receive a warning if the data presented for Adler checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—Adler_32_Little_Endian address

This filter may be used to insert a Adler 32-bit checksum of the data into the data. Four bytes, in
little-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes
are processed in ascending address order (nof in the order they appear in the input).

Note: If you have holes in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You
almost always want to use the —fill filter before any of the Adler checksum filters. You will
receive a warning if the data presented for Adler checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—AND value

This filter may be used to bit-wise AND a value to every data byte. This is useful if you need to
clear bits. Only existing data is altered, no holes are filled.

—Bit_Reverse [width]

Reference Manual

This filter may be used to reverse the order of the bits in each data byte. By specifying a width
(in bytes) it is possible to reverse the order multi-byte values; this is implemented using the byte-
swap filter.

SRecord 59

srec_input(1) General Commands Manual srec_input(1)

—Byte_Swap [width]
This filter may be used to swap pairs of odd and even bytes. By specifying a width (in bytes) it is
possible to reverse the order of 4 and 8 bytes, the default is 2 bytes. (Widths in excess of 8 are
assumed to be number of bits.) It is not possible to swap non-power-of-two addresses. To
change the alignment, use the offset filter before and after.

—Checksum_BitNot_Big_Endian address [nbytes [width]|
This filter may be used to insert the one’s complement checksum of the data into the data, most
significant byte first. The data is literally summed; if there are duplicate bytes, this will produce
an incorrect result, if there are holes, it will be as if they were filled with zeros. If the data
already contains bytes at the checksum location, you need to use an exclude filter, or this will
generate errors. You need to apply and crop or fill filters before this filter. The value will be
written with the most significant byte first. The number of bytes of resulting checksum defaults
to 4. The width (the width in bytes of the values being summed) defaults to 1.

—Checksum_BitNot_Little_Endian address [nbytes [width 1]
This filter may be used to insert the one’s complement (bitnot) checksum of the data into the data,
least significant byte first. Otherwise similar to the above.

—Checksum_Negative_Big_Endian address [nbytes [width 1]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

—Checksum_Negative_Little_Endian address [nbytes [width]]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

—Checksum_Positive_Big_Endian address [nbytes [width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—Checksum_Positive_Little_Endian address [nbytes [width 1]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—CRC16_Big_Endian address [modifier...]
This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the
data. Two bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the
input).

The following additional modifiers are understood:
number Set the polynomial to be used to the given number.

—POLYnomial name
This option may be used to set the CRC polynomial to be used, by name. The known
names include:

ibm 0x8005
ansi 0x8005
ccitt 0x1021
t10-dif 0x8bb7
dnp 0x3d65
dect 0x0589

See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for a table of names and
values.

—Most_To_Least
The CRC calculation is performed with the most significant bit in each byte processed
first, and then proceeding towards the least significant bit. This is the default.

Reference Manual SRecord 60

srec_input(1) General Commands Manual srec_input(1)

—Least_To_Most
The CRC calculation is performed with the least significant bit in each byte processed
first, and then proceeding towards the most significant bit.

-CCITT
The CCITT calculation is performed. The initial seed is OXFFFF. This is the default.

-XMODEM
The alternate XMODEM calculation is performed. The initial seed is 0x0000.

-BROKEN
A common-but-broken calculation is performed (see note 2 below). The initial seed is
0x84CF.

—AUGment
The CRC is augmented by sixteen zero bits at the end of the calculation. This is the
default.

—No-AUGment
The CRC is not augmented at the end of the calculation. This is less standard
conforming, but some implementations do this.

Note: If you have holes in your data, you will get a different CRC than if there were no holes.
This is important because the in-memory EPROM image will not have holes. You almost always
want to use the —fill filter before any of the CRC filters. You will receive a warning if the data
presented for CRC has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter,
because it will establish the data across the full EPROM address range.

Note 2: there are a great many CRC16 implementations out there, see http://www.joegeluso.com-
/software/articles/ccitt.htm (now gone, reproduced at http://srecord.sourceforge.net-
/crc16—ccitt.html) and “A painless guide to CRC error detection algorithms”
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html for more information. If all else fails,
SRecord is open source software: read the SRecord source code. The CRC16 source code (found
in the srecord/crclé6. cc file of the distribution tarball) has a great many explanatory
comments.

Please try all twelve combinations of the above options before reporting a bug in the CRC16
calculation.

—CRC16_Little_Endian address [modifier...]
The same as the ~-CRC16_Big_Endian filter, except in little-endian byte order.

—CRC32_Big_Endian address [modifier...]
This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the
data. Four bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the
input). See also the note about holes, above.

The following additional modifiers are understood:

-CCITT
The CCITT calculation is performed. The initial seed is all one bits. This is the
default.

-XMODEM
An alternate XMODEM-style calculation is performed. The initial seed is all zero bits.

—CRC32_Little_Endian address
The same as the -CRC32_Big_Endian filter, except in little-endian byte order.

Reference Manual SRecord 61

srec_input(1) General Commands Manual srec_input(1)

—Crop address-range
This filter may be used to isolate a section of data, and discard the rest.

—Exclude address-range
This filter may be used to exclude a section of data, and keep the rest. The is the logical
complement of the —Crop filter.

—Exclusive_Length_Big_Endian address [nbytes [width 1]
The same as the —Length_Big_Endian filter, except that the result does not include the length
itself.

—Exclusive_Length_Little_Endian address [nbytes [width]|
The same as the —Length_Little_Endian filter, except that the result does not include the length
itself.

—Exclusive_ MAXimum_Big_Endian address [nbytes]
The same as the -MAXimum_Big_Endian filter, except that the result does not include the
maximum itself.

—Exclusive_MAXimum_Little_Endian address [nbytes |
The same as the -MAXimum_Little_Endian filter, except that the result does not include the
maximum itself.

—Exclusive_MINimum_Big_Endian address [nbytes |
The same as the -MINimum_Big_Endian filter, except that the result does not include the
minimum itself.

—Exclusive_ MINimum_Little_Endian address [nbytes]
The same as the -MINimum_Little_Endian filter, except that the result does not include the
minimum itself.

—eXclusive-OR value
This filter may be used to bit-wise XOR a value to every data byte. This is useful if you need to
invert bits. Only existing data is altered, no holes are filled.

—Fill value address-range
This filter may be used to fill any gaps in the data with bytes equal to value. The fill will only
occur in the address range given.

—Fletcher_16_Big_Endian address [suml sum2 [answer]|
This filter may be used to insert an Fletcher 16-bit checksum of the data into the data. Two bytes,
big-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes are
processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You
almost always want to use the —fill filter before any of the Fletcher checksum filters. You will
receive a warning if the data presented for Fletcher checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

It is possible to select seed values for suml and sum?2 in the algorithm, by adding seed values on
the command line. They each default to OxFF if not explicitly stated. The default values (0)
means that an empty EPROM (all 0x00 or all 0xFF) will sum to zero; by changing the seeds, an
empty EPROM will always fail.

The third optional argument is the desired sum, when the checksum itself is summed. A common
value is 0x0000, placed in the last two bytes of an EPROM, so that the Fletcher 16 checksum of
the EPROM is exactly 0x0000. No manipulation of the final value is performed if this value if

Reference Manual SRecord 62

srec_input(1) General Commands Manual srec_input(1)

not specified.

—Fletcher_16_Little_Endian address
This filter may be used to insert an Fletcher 16-bit checksum of the data into the data. Two bytes,
in little-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes
are processed in ascending address order (nof in the order they appear in the input).

Note: If you have holes in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You
almost always want to use the —fill filter before any of the Fletcher filters. You will receive a
warning if the data presented for Fletcher checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

—Fletcher_32_Big_Endian address
This filter may be used to insert a Fletcher 32-bit checksum of the data into the data. Four bytes,
big-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes are
processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You
almost always want to use the —fill filter before any of the Fletcher checksum filters. You will
receive a warning if the data presented for Fletcher checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

—Fletcher_32_Little_Endian address
This filter may be used to insert a Fletcher 32-bit checksum of the data into the data. Four bytes,
in little-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes
are processed in ascending address order (nof in the order they appear in the input).

Note: If you have holes in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You
almost always want to use the —fill filter before any of the Fletcher checksum filters. You will
receive a warning if the data presented for Fletcher checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter,
because it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

—Length_Big_Endian address [nbytes [width]|
This filter may be used to insert the length of the data (high water minus low water) into the data.
This includes the length itself. If the data already contains bytes at the length location, you need
to use an exclude filter, or this will generate errors. The value will be written with the most
significant byte first. The number of bytes defaults to 4. The width defaults to 1, and is divided
into the actual length, thus you can insert the width in units of words (2) or longs (4).

—Length_Little_Endian address [nbytes [width 1]
The same as the —Length_Big_Endian filter, except the value will be written with the least
significant byte first.

Reference Manual SRecord 63

srec_input(1) General Commands Manual srec_input(1)

—MAXimum_Big_Endian address [nbytes]
This filter may be used to insert the maximum address of the data (high water
+ 1) into the data. This includes the maximum itself. If the data already contains bytes at the
given address, you need to use an exclude filter, or this will generate errors. The value will be
written with the most significant byte first. The number of bytes defaults to 4.

—MAXimum_Little_Endian address [nbytes |
The same as the -MAXimum_Big_Endian filter, except the value will be written with the least
significant byte first.

—Message_Digest_5 address
This filter may be used to insert a 16 byte MDS5 hash into the data, at the address given.

—MINimum_Big_Endian address [nbytes]
This filter may be used to insert the minimum address of the data (low water) into the data. This
includes the minimum itself. If the data already contains bytes at the given address, you need to
use an exclude filter, or this will generate errors. The value will be written with the most
significant byte first. The number of bytes defaults to 4.

—MINimum_Little_Endian address [nbytes |
The same as the -MINimum_Big_Endian filter, except the value will be written with the least
significant byte first.

—-NOT This filter may be used to bit-wise NOT the value of every data byte. This is useful if you need to
invert the data. Only existing data is altered, no holes are filled.

—OFfset nbytes
This filter may be used to offset the addresses by the given number of bytes. No data is lost, the
addresses will wrap around in 32 bits, if necessary. You may use negative numbers for the offset,
if you wish to move data lower in memory.

Please note: the execution start address is a different concept than the first address in memory of
your data. If you want to change where your monitor will start executing, use the —execution-
start-address option (srec_cat(1) only).

—OR value
This filter may be used to bit-wise OR a value to every data byte. This is useful if you need to set
bits. Only existing data is altered, no holes are filled.

—Random_Fill address-range
This filter may be used to fill any gaps in the data with random bytes. The fill will only occur in
the address range given.

—Ripe_Message_Digest_160 address
This filter may be used to insert an RMD160 hash into the data.

—Secure_Hash_Algorithm_1 address
This filter may be used to insert a 20 byte SHA1 hash into the data, at the address given.

—Secure_Hash_Algorithm_224 address
This filter may be used to insert a 28 byte SHA224 hash into the data, at the address given. See
Change Notice 1 for FIPS 180-2 for the specification.

—Secure_Hash_Algorithm_256 address
This filter may be used to insert a 32 byte SHA256 hash into the data, at the address given. See
FIPS 180-2 for the specification.

—Secure_Hash_Algorithm_384 address
This filter may be used to insert a 48 byte SHA384 hash into the data, at the address given. See
FIPS 180-2 for the specification.

Reference Manual SRecord 64

srec_input(1) General Commands Manual srec_input(1)

—Secure_Hash_Algorithm_512 address
This filter may be used to insert a 64 byte SHAS512 hash into the data, at the address given. See
FIPS 180-2 for the specification.

—SPlit multiple [offset [width]]
This filter may be used to split the input into a subset of the data, and compress the address range
so as to leave no gaps. This useful for wide data buses and memory striping. The multiple is the
bytes multiple to split over, the offset is the byte offset into this range (defaults to 0), the width is
the number of bytes to extract (defaults to 1) within the multiple. In order to leave no gaps, the
output addresses are (width / multiple) times the input addresses.

—STM32 address
This is a synonym for the -STM32_Little_Endian filter.

—-STM32_Little_Endian address

—-STM32_Big_Endian address
These filters many be use to generate the CRC used by the hardware CRC unit on the STM32
series of ARM MPUs. The algorithm used by the STM32 hardware unit is just a CRC32 with a
different polynomial and word-fed instead of byte-fed.

The address is where to place the 4-byte STM32 CRC.

The CRC used is documented in “RM0041, STM32F100xx reference manual”, page 46, chapter
“CRC Calculation Unit”, which can be found at
http://www.st.com/internet/mcu/product/216844.jsp

-TIGer address
This filter may be used to insert a 24 byte TIGER/192 hash into the data at the address given.

—UnFill value [min-run-length]
This filter may be used to create gaps in the data with bytes equal to value. You can think of it as
reversing the effects of the —Fill filter. The gaps will only be created if the are at least min-run-
length bytes in a row (defaults to 1).

—Un_SPlit multiple [offset [width]]
This filter may be used to reverse the effects of the split filter. The arguments are identical. Note
that the address range is expanded (multiple / width) times, leaving holes between the stripes.

—WHIrlpool address
This filter may be used to insert a 64 byte WHIRLPOOL hash into the data, at the address given.

Address Ranges
There are eight ways to specify an address range:

minimum maximum
If you specify two number on the command line (decimal, octal and hexadecimal are understood,
using the C conventions) this is an explicit address range. The minimum is inclusive, the
maximum is exclusive (one more than the last address). If the maximum is given as zero then the
range extends to the end of the address space.

—Within input-specification
This says to use the specified input file as a mask. The range includes all the places the specified

input has data, and holes where it has holes. The input specification need not be just a file name,
it may be anything any other input specification can be.

See also the —over option for a discussion on operator precedence.

—OVER input-specification
This says to use the specified input file as a mask. The range extends from the minimum to the
maximum address used by the input, without any holes, even if the input has holes. The input
specification need not be just a file name, it may be anything any other input specification can be.

You may need to enclose input-specification in parentheses to make sure it can’t misinterpret

Reference Manual SRecord 65

srec_input(1) General Commands Manual srec_input(1)

which arguments go with which input specification. This is particularly important when a filter is
to follow. For example

filename —fill 0 —over filename2 —swap-bytes
groups as

filename —fill 0 —over °(filename2 —swap-bytes ’)’
when what you actually wanted was

*(’ filename —fill 0 —over filename2 >)’ —swap-bytes
The command line expression parsing tends to be “greedy” (or right associative) rather than
conservative (or left associative).

address-range —RAnge-PADding number
It is also possible to pad ranges to be whole aligned multiples of the given number. For example
input-file —fill OXFF —within input-file —range-pad 512
will fill the input-file so that it consists of whole 512-byte blocks, aligned on 512 byte boundaries.
Any large holes in the data will also be multiples of 512 bytes, though they may have been shrunk
as blocks before and after are padded.

This operator has the same precedence as the explicit union operator.

address-range -INTERsect address-range
You can intersect two address ranges to produce a smaller address range. The intersection
operator has higher precedence than the implicit union operator (evaluated left to right).

address-range —UNlon address-range
You can union two address ranges to produce a larger address range. The union operator has
lower precedence than the intersection operator (evaluated left to right).

address-range —DIFference address-range
You can difference two address ranges to produce a smaller address range. The result is the left
hand range with all of the right hand range removed. The difference operator has the same
precedence as the implicit union operator (evaluated left to right).

address-range address-range
In addition, all of these methods may be used, and used more than once, and the results will be
combined (implicit union operator, same precedence as explicit union operator).

Calculated Values
Most of the places above where a number is expected, you may supply one of the following:

- value
The value of this expression is the negative of the expression argument. Note the space between
the minus sign and its argument: this space is mandatory.
srec_cat in.srec -offset — -minimum-addr in.srec -o
out.srec
This example shows how to move data to the base of memory.
(value)

You may use parentheses for grouping. When using parentheses, they must each be a separate
command line argument, they can’t be within the text of the preceding or following option, and
you will need to quote them to get them past the shell, suchas * (* and ") ’.

—MINimum-Address input-specification
This inserts the minimum address of the specified input file. The input specification need not be
just a file name, it may be anything any other input specification can be.

See also the —over option for a discussion on operator precedence.

—MAXimum-Address input-specification
This inserts the maximum address of the specified input file, plus one. The input specification
need not be just a file name, it may be anything any other input specification can be.

See also the —over option for a discussion on operator precedence.

Reference Manual SRecord 66

srec_input(1) General Commands Manual srec_input(1)

—Length input-specification
This inserts the length of the address range in the specified input file, ignoring any holes. The
input specification need not be just a file name, it may be anything any other input specification
can be.

See also the —over option for a discussion on operator precedence.

For example, the —OVER input-specification option can be thought of as short-hand for ’(’ —min file -max
file’)’, except that it is much easier to type, and also more efficient.

In addition, calculated values may optionally be rounded in one of three ways:

value —Round_Down number
The value is rounded down to the the largest integer smaller than or equal to a whole multiple of
the number.

value —Round_Nearest number
The value is rounded to the the nearest whole multiple of the number.

value —Round_Up number
The value is rounded up to the the smallest integer larger than or equal to a whole multiple of the
number.

When using parentheses, they must each be a separate command line argument, they can’t be within the
text of the preceding or following option, and you will need to quote them to get them past the shell, as
f("and ") "’.

COPYRIGHT
srec_input version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_input program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_input
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_input —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 67

GPL(GNU) Free Software Foundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program — to make sure it remains free software for all its users. We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you received. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modity it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

GNU GPL 68

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or
secondarily liable for infringement under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that is
widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of the
specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose tools
or generally available free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GPL 69

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose of
having them make modifications exclusively for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or modification of the work as a means
of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply to
the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

¢) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to
the whole of the work, and all its parts, regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not invalidate such permission if you have
separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if
the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need
not make them do so.

GPL 70

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to
apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c¢) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer
equivalent access to the Corresponding Source in the same way through the same place at no further
charge. You need not require recipients to copy the Corresponding Source along with the object code.
If the place to copy the object code is a network server, the Corresponding Source may be on a
different server (operated by you or a third party) that supports equivalent copying facilities, provided
you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is
normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved in favor of coverage. For a particular product received by a particular user, “normally
used” refers to a typical or common use of that class of product, regardless of the status of the particular
user or of the way in which the particular user actually uses, or expects or is expected to use, the product.

A product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from a
modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,

GPL 71

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is
characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementation available to the public in source code
form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal
in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in
the Appropriate Legal Notices displayed by works containing it; or

¢) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed
by this License along with a term that is a further restriction, you may remove that term. If a license
document contains a further restriction but permits relicensing or conveying under this License, you may
add to a covered work material governed by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files,
a statement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

GPL 72

GPL(GNU) Free Software Foundation GPL(GNU)

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,
or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing

GNU GPL 73

GPL(GNU) Free Software Foundation GPL(GNU)

the Program or any portion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the
work is not available for anyone to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent
license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s
use of the covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party
based on the extent of your activity of conveying the work, and under which the third party grants, to any of
the parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to

GNU GPL 74

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

infringement that may otherwise be available to you under applicable patent law.
12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying from those to whom you convey the
Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply to the
part which is the covered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

GPL 75

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type “show w”. This is free
software, and you are welcome to redistribute it under certain conditions; type “show c” for details.

The hypothetical commands “show w” and “show c¢” should show the appropriate parts of the General
Public License. Of course, your program’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-Igpl.html>.

GPL 76

srecord(3) Library Functions Manual srecord(3)

NAME
srecord — library to manipulate EPROM load files

SYNOPSIS

#include <srecord/name.h>

cc ... —Isrecord

DESCRIPTION
The srecord sjared library may be used to add all of the EPROM file formats and filters to your own
projects.

The full documentation for the shared library is generated by Doxygen from the source files, and is
available on the Internet at
http://srecord.sourceforge.net/srecord/index.html

COPYRIGHT
srecord version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srecord program comes with ABSOLUTELY NO WARRANTY; for details use the ’srecord
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srecord —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 77

LGPL(3) Free Software Foundation LGPL(3)

NAME

LGPG — GNU Lesser General Public License

DESCRIPTION

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3
of the GNU General Public License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU
GPL" refers to version 3 of the GNU General Public License.

"The Library" refers to a covered work governed by this License, other than an Application or a Combined
Work as defined below.

An "Application" is any work that makes use of an interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of
using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an Application with the Library. The
particular version of the Library with which the Combined Work was made is also called the "Linked
Version".

The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the
Combined Work, excluding any source code for portions of the Combined Work that, considered in
isolation, are based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the object code and/or source code for
the Application, including any data and utility programs needed for reproducing the Combined Work from
the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of
the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be
supplied by an Application that uses the facility (other than as an argument passed when the facility is
invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an
Application does not supply the function or data, the facility still operates, and performs whatever
part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that
copy.

3. Object Code Incorporating Material from Library Header Files.

GNU

The object code form of an Application may incorporate material from a header file that is part of the
Library. You may convey such object code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline
functions and templates (ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that the
Library and its use are covered by this License.

LGPL 78

LGPL(3) Free Software Foundation LGPL(3)

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not
restrict modification of the portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and
that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright
notice for the Library among these notices, as well as a reference directing the user to the copies
of the GNU GPL and this license document.

d)
Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the
Corresponding Application Code in a form suitable for, and under terms that permit,
the user to recombine or relink the Application with a modified version of the Linked
Version to produce a modified Combined Work, in the manner specified by section 6 of
the GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (a) uses at run time a copy of the Library already present on the
user’s computer system, and (b) will operate properly with a modified version of the
Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such
information under section 6 of the GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the Combined Work produced by
recombining or relinking the Application with a modified version of the Linked Version. (If you
use option 4d0, the Installation Information must accompany the Minimal Corresponding Source
and Corresponding Application Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding
Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together
with other library facilities that are not Applications and are not covered by this License, and convey such a
combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

GNU

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a
certain numbered version of the GNU Lesser General Public License "or any later version" applies to it,
you have the option of following the terms and conditions either of that published version or of any later
version published by the Free Software Foundation. If the Library as you received it does not specify a
version number of the GNU Lesser General Public License, you may choose any version of the GNU
Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU

LGPL 79

LGPL(3) Free Software Foundation LGPL(3)

Lesser General Public License shall apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the Library.

GNU LGPL 80

srec_aomf(5) File Formats Manual srec_aomf(5)

NAME
srec_aomf — Intel Absolute Object Module Format

DESCRIPTION
The Absolute Object Module Format (AOMF) is a subset of the 8051 OMF. The structure of an absolute
object file (the order of the records in it) is similar to that of a relocatable object file. There are three main
differences: the first is that an absolute object file contains one module only, the second is that not all the
records can appear in the absolute file and the third is that the records can contain only absolute
information.

Generic Record Format
Each record starts with a record type which indicates the type of the record, and record length which
contain the number of bytes in the record exclusive of the first two fields. The record ends with a checksum

byte which contains the 2s complement of the sum (modulo 256) of all other bytes in the record. Therefore
the sum (modulo 256) of all bytes in the record is zero.

The record length includes the payload and checksum fields, but excludes the type and length fields.
All 16-bit fields are little-endian.

REC Record | Payload CHK
TYP Length SUM
8 bits 16 bits 8 bits

Here are some of the relevant record types:

0x01 Scope Definition Record
0x02 Module Start Record

0x04 Module End Record

0x06 Content Record

0xOE Segment Definition Record
0x12 Debug Items Record

0x16 Public Definition Record
0x18 External Definition Record

Names are not stored as C strings. Names are stored as a length byte followed by the contents.

Structure
An AOMEF file consists of a module header record (0x02), followed by one or more content (0x06), scope
(0x01) or debug (0x12) records, and ends in a module end record (0x04).

The records with the following types are extraneous (they may appear in the file but are ignored): 0xOE,
0x16 and 0x18 (definition records). All records which are not part of the AOMF and are not extraneous are
considered erroneous.

Module Header Record
REC Record Module | TRN ID Zero CHK
TYP Length Name 8 bits 8 bits SUM
0x02 16 bits 8 bits

Each module must starts with a module header record. It is used to identify the module for the RL51 and
other future processors of 8051 object files. In addition to the Module Name the record contains:

TRN ID The byte identifies the program which has generated this module:

0xFD ASMS51
OxFE PL/M-51
OxFF RLS51.

Module End Record

Reference Manual SRecord 81

srec_aomf(5) File Formats Manual srec_aomf(5)

REC Record | Module | zero REG Zero CHK

TYP Length | Name 16 bits MSK 8 bits SUM

0x04 16 bits 8 bits 8 bits
The record ends the module sequence and contains the following information: characteristics
MODULE NAME

The name of the module is given here for a consistency check. It must match the name given in
the Module Header Record.

REGISTER MASK (REG MSK)
The field contains a bit for each of the four register banks. Each bit, when set specifies that the
corresponding bank is used by the module:

Bit O (the least significant bit)
bank #0.

Bit 1 bank #1.
Bit 2 bank #2.
Bit 3 bank #3.

Content Record
REC Record SEG ID Offset DATA CHK
TYP Length | 8 bits 16 bits SUM
0x06 16 bits 8 bits

This record provides one or more bytes of contiguous data, from which a portion of a memory image may
be constructed.

SEG ID This field must be zero.

OFFSET
Gives the absolute address of the first byte of data in the record, within the CODE address space.

DATA A sequence of data bytes to be loaded from OFFSET to OFFSET+RECORDLENGTH-5.

Size Multiplier
In general, raw binary data will expand in sized by approximately 1.02 times when represented with this
format.

SOURCE
http://www.intel.com/design/mcs96/swsup/omf96_pi.pdf
ftp://download.intel.com/design/mcs51/SWSUP/omf51.exe (zip archive)
http://www.elsist.net/WebSite/ftp/various/OMF5 1EPS.pdf

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 82

srec_ascii_hex(5) File Formats Manual srec_ascii_hex(5)

NAME

srec_ascii_hex — Ascii-Hex file format

DESCRIPTION
This format is also known as the Ascii-Space-Hex or Ascii-Hex-Space format. If you know who invented
this format, please let me know. If you have a better or more complete description, I’d like to know that,
too.

The file starts with a start-of-text (STX or Control-B) character (0x02). Everything before the STX is
ignored.

Each data byte is represented as 2 hexadecimal characters, followed by an "execution character". The
default execution character is a space, although many programs which write this format omit the space
character immediately preceding end-of-line.

The address for data bytes is set by using a sequence of $SAnnnn, characters, where nnnn is the
4-character ascii representation of the address. The comma is required. There is no need for an address
record unless there are gaps. Implicitly, the file starts a address O if no address is set before the first data
byte.

The file ends with an end-of-text (ETX or Control-C) character (0x03). Everything following the ETX is
ignored.

It is also possible to specify a running 16-bit checksum using a sequence of $Snnnn, characters, although
this usually appears after the ETX character and is thus often ignored.

Variant Forms
In addition to a space character, the execution character can also be percent (%) called "ascii-hex-percent"
format, apostrophe (’) or comma (,) called "ascii-hex-comma" format. The file must use the same
execution character throughout.

If the execution character is a comma, the address and checksum commands are terminated by a dot (.)
rather than a comma (,).

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE
Here is an example ascii-hex file. It contains the data “Hello, World[rq] to be loaded at address 0x1000.
"B $A1000,
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 OA °C

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 83

srec_atmel_generic(5) File Formats Manual srec_atmel_generic(5)

NAME

srec_atmel_generic — Atmel Generic file format

DESCRIPTION
This format is the output of the Atmel AVR assembler. The file contains two columns of hexadecimal
coded values. The first column is the 24-bit word address, the second column is the 16-bit word data. The
columns are separated by a colon (‘:”) character.

By default, SRecord treats this is little-endian data (the least significant byte first). If you want big endian
order, use the —atmel-generic-be argument instead.

Size Multiplier
In general, binary data will expand in sized by approximately 6.0 times when represented with this format
(6.5 times in Windows).

EXAMPLE
Here is an example Atmel Generic file. It contains the data “Hello, World[rq] to be loaded at bytes address
0x0100 (but remember, the file contents are word addressed).
000080:4865
000081:6C6C
000082:6F2C
000083:2057
000084:6F72
000085:6C64

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 84

srec_binary(5) File Formats Manual srec_binary(5)

NAME

srec_binary — binary file format

DESCRIPTION

It is possible to read and write binary files using srec_cat(1).

File Holes
A file hole is a portion of a regular file that contains NUL characters and is not stored in any data block on
disk. Holes are a long-standing feature of Unix files. For instance, the following Unix command creates a
file in which the first bytes are a hole:

$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6
$

Now /tmp/hole has 6,145 characters (6,144 NUL characters plus an X character), yet the file occupies
just one data block on disk.

File holes were introduced to avoid wasting disk space. They are used extensively by database applications
and, more generally, by all applications that perform hashing on files.

See http://www.oreilly.com/catalog/linuxkernel2/chapter/ch17.pdf for more information.

Reading
The size of binary files is taken from the size of the file on the file system. If the file has holes these will
read as blocks of NUL (zero) data, as there is no elegant way to detect Unix file holes. In general, you
probably want to use the —unfill filter to find and remove large swathes of zero bytes.

Writing
In producing a binary file, srec_cat(1) honours the address information and places the data into the binary
file at the addresses specified in the hex file. This usually results on holes in the file. Sometimes
alarmingly large file sizes are reported as a result.

If you are on a brain-dead operating system without file holes then there are going to be real data blocks
containing real zero bytes, and consuming real amounts of disk space. Upgrade — I suggest Linux.

To make a file of the size you expect, use
srec_info foo.s19
to find the lowest address, then use
srec_cat f00.s19 —intel —offset —n —o foo.bin —binary

where 7 is the lowest address present in the foo . s109 file, as reported by srec_info(1). The negative offset
serves to move the data down to have an origin of zero.

SEE ALSO
srec_input(1)
for a description of the —unfill filter

srec_examples(1)
has a section about binary files, and ways of automagically offseting the data back to zero in a
single command.

COPYRIGHT
SRrecord version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The SRrecord program comes with ABSOLUTELY NO WARRANTY; for details use the *SRrecord
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *SRrecord —VERSion License’ command.

Reference Manual SRecord 85

srec_binary(5) File Formats Manual srec_binary(5)

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 86

srec_brecord(5) File Formats Manual srec_brecord(5)

NAME
srec_brecord — Freescale MC68EZ328 Dragonball bootstrap record format

DESCRIPTION
This data format is understood by Freescale MC68EZ328 Dragonball series processors on their internal
UART.

Lines
Each line contains hexadecimal data, each byte represented by two hexadecimal nybbles in upper case.
Characters not in this set, but larger than 0x30 (e.g. lower case) will be ignored, less than 0x30 (e.g. CR or
LF) are considered record terminators. Comments are problematic; don’t try this at home.

Fields
Each line contains a 4-byte address (big endian), a 1-byte length-and-mode, and then data bytes as dictated
by the length. There is no checksum. A zero length record is an execution start address record, non-zero
length records are data.

1l2]3]4]s5][6]7][8]9]10] . [n
Address Length Data
The length-and-mode byte is formatted as follows:
7]6]s5]4[3]2]1]0
Mode | R Length

Mode These bits are ignored by SRecord in input (00 = bytes, 01 = half words, 10 is reserved, 11 = long
words). These bits are always zero on output by SRecord.

R This bit indicates a data read rather than a data write; SRecord does not accept input files with
this bit set, and will not set it on output.

Length The length of the records data bytes. It does not include the address or length bytes. The
maximum payload of a record is 31 bytes of data.

Size Multiplier
In general, binary data will expand in sized by at least 2.35 times when represented with this format.

EXAMPLE
Here is an example b-record format file. It contains the data “Hello, World” to be loaded at address O.
000000000D48656CH6COF2C20576F726C640A

SEE ALSO
http://www.freescale.com/files/32bit/doc/ref_manual/MC68VZ328UM.pdf

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran E-Mail: scottfinneran@yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 87

srec_coe.5(5) File Formats Manual srec_coe.5(5)

NAME

srec_coe — Xilinx Coefficient File Format

DESCRIPTION
The Xilinx Coefficient File Format has a general syntax of the form:
keyword = value ; optional comment
radix-keyword = value ; optional comment
data-keyword = value, ..., value;

There are numerous keywords, only the “memory_initialization_radix” and “memory_initialization_vector”
keywords are used. The semicolons are mandatory.

Size Multiplier
Binary data stored in this format expand approximately 4 times (5 time on Windows).

See Also
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgn_r_coe_file_syntax.htm

COPYRIGHT
srec_coe.5 version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,

2013, 2014 Peter Miller

The srec_coe.5 program comes with ABSOLUTELY NO WARRANTY; for details use the *srec_coe.5
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_coe.5 —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 88

srec_cosmac(5) File Formats Manual srec_cosmac(5)

NAME

srec_cosmac — RCA Cosmac ElIf file format

DESCRIPTION
This file takes the form of one or more RCA Cosmac Elf monitor commands, also known as the IDIOT/4
monitor. Only the change memory command (! M) is allowed.

The general form of the ! M command takes the form

Maaaa dd ... dd
The !M command writes data byte bytes (represented by character pairs dd) into successive memory
locations, started at address aaaa. Spaces between data bytes are ignored.

Using the comma (,) line continuation character resumes from the next address in sequence.
Maaaa dd ... dd, dd ... dd

Using the semicolon (;) line continuation character takes an address on the next line
Maaaa dd ... dd; aaaa dd ... dd

It is also possible to have the semicolon immediately after the command.
'M; aaaa dd ... dd

All of these forms may be used in combination.

Size Multiplier
In general, binary data will expand in size by approximately 2.0 times when represented with this format.

EXAMPLE
Here is an example Cosmac file. It contains the data “Hello, World[rq] to be loaded at address 0x1000.

'M1000 48656C6C6F2C20576F726C640A
COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 89

srec_dec_binary(5) File Formats Manual srec_dec_binary(5)

NAME

srec_dec_binary — DEC Binary (XXDP) file format

DESCRIPTION

The DEC Binary (XXDP) format was used on the PDP 11 series machines. This is a binary format, and is
not readable or editable with a text editor. The file consists of records of the form

type ‘ length ‘ address | ...data... | checksum
The field are defined as follows:

type Two byte little-endian value. Must always be 1.
length Two byte little-endian value. This is the number of bytes in the data, plus six.

address Two byte little-endian value. This is the load address of the data.

data The data is simple raw bytes. There are (length-6) of them.

checksum
The checcksum is a single byte. It is the negative of the simple summ of all the header and data
bytes.

If the record length is exactly 6 (i.e. no data), this is the execution start address record, indicating the
transfer address.

In addition there may be NUL padding characters between records. It is common for records to be padded
so that they start on even byte boundaries. In the days of paper tape, it was common for the file to have
many leading NULS, to generate blank leader on the tape.

Size Multiplier

In general, raw binary data will expand in sized by approximately 1.03 times when represented with this
format.

COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER

Scott Finneran E-Mail: scottfinneran@yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 90

srec_emon52(5) File Formats Manual srec_emon52(5)

NAME
srec_emon52 — Elektor Monitor (EMONS5?2) file format

DESCRIPTION
This format is used by the monitor EMONS52, developed by the European electronics magazine Elektor
(Elektuur in Holland). Elektor wouldn’t be Elektor if they didn’t try to reinvent the wheel. It’s a mystery
why they didn’t use an existing format for the project. Only the Elektor Assembler will produce this file
format, reducing the choice of development tools dramatically.

Records
All data lines are called records, and each record contains the following four fields:

’cc ‘ aaaa ‘ : ‘ dd...dd ‘ ssss‘

The field are defined as follows:

cc The byte count. A two digit hex value (1 byte), counting the actual data bytes in the record. The
byte count is separated from the next field by a space.

aaaa The address field. A four hex digit (2 byte) number representing the first address to be used by
this record.

The address field and the data field are separated by a colon.

dd The actual data of this record. There can be 1 to 255 data bytes per record (see cc) All bytes in
the record are separated from each other (and the checksum) by a space.

$SSS Data Checksum, adding all bytes of the data line together, forming a 16 bit checksum. Covers
only all the data bytes of this record.

Please note that there is no End Of File record defined.

Byte Count
The byte count cc counts the actual data bytes in the current record. Usually records have 16 data bytes. I

don’t know what the maximum number of data bytes is. It depends on the size of the data buffer in the
EMONS52.

Address Field
This is the address where the first data byte of the record should be stored. After storing that data byte, the
address is incremented by 1 to point to the address for the next data byte of the record. And so on, until all
data bytes are stored.

The address is represented by a 4 digit hex number (2 bytes), with the MSD first.

Data Field
The payload of the record is formed by the Data field. The number of data bytes expected is given by the
Byte Count field.

Checksum
The checksum is a 16 bit result from adding all data bytes of the record together.

Size Multiplier
In general, binary data will expand in sized by approximately 3.8 times when represented with this format.

EXAMPLE
Here is an example of an EMONS?2 file:
10 0000:57 6F 77 21 20 44 69 64 20 79 6F 75 20 72 65 61 0564
10 0010:6C 6C 79 20 67 6F 20 74 68 72 6F 75 67 68 20 61 05E9
10 0020:6C 6C 20 74 68 69 73 20 74 72 6F 75 62 6C 65 20 O5ED
10 0030:74 6F 20 72 65 61 64 20 74 68 69 73 20 73 74 72 05FO0
04 0040:69 6E 67 21 O15F

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/emon52.htm

Reference Manual SRecord 91

srec_emon52(5) File Formats Manual srec_emon52(5)

AUTHOR
This man page was taken from the above Web page. It was written by San Bergmans
<sanmail @bigfoot.com>

Reference Manual SRecord 92

srec_fairchild(5) File Formats Manual srec_fairchild(5)

NAME

srec_fairchild — Fairchild Fairbug file format

DESCRIPTION

The Fairchild Fairbug format has 8-byte records. A file begins with an address record and ends with an
end-of-file record.

There are three record types in this file format.

Address records are of the form

indicating the address for the following data records.

Data records are of the form

| x | oy | c |
Each data record begins with an X and always contains 8 data bytes. The ff characters are hexadecimal byte
values (8 bytes). Each data byte is represented by 2 hexadecimal characters. The c character is a hex digit
being the the nibble-sum of the data bytes. A 1-digit hexadecimal checksum follows the data in each data
record. The checksum represents, in hexadecimal notation, the sum of the binary equivalents of the 16
digits in the record; the half carry from the fourth bit is ignored. The programmer ignores any character
(except for address characters and the asterisk character, which terminates the data transfer) between a
checksum and the start character of the next data record. This space can be used for comments.

The end-of-file record has the form
*

The last record consists of an asterisk only, which indicates the end of file.

Size Multiplier

In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE

Here is an example Fairchild Fairbug file. It contains the data “Hello, World[rq] to be loaded at address
0x1000. Notice how the last record is padded with OxFF bytes.

51000

X48656C6C6F2C2057C

X6F726C64210AFFFF3

*

COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER

Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 93

srec_fastload(5) File Formats Manual srec_fastload(5)

NAME
srec_fastload — LSI Logic Fast Load file format

DESCRIPTION
The FastLoad Format uses a compressed ASCII format that permits files to be downloaded in less than half
the time taken for Motorola S-records.

The base-64 encoding used is "A-Za-z0-9,.". The data is encoded in groups of 4 characters (3 bytes, 24
bits).
The character ’/’ is used to introduce a special function. Special functions are:

Annnnnn
Defines an address.

Bnn Define a single byte.
Cnnnn Compare the checksums. The checksum is a simple positive 16-bit sum, of the data bytes only.

EAA Define the program’s entry point. The address will be the current address as defined by the A
command. (The AA number in this command is ignored.) This must be the last entry in the file.

KAA Clear the checksum. (The AA number in this command is ignored.)

Sname, X
Define a symbol. The address of the symbol will be the current address as defined by the A
command.

Znn Clear a number of bytes.

Size Multiplier
In general, binary data will expand in sized by approximately 1.4 times when represented with this format.

EXAMPLE
Here is an example LSI Logic Fast Load format file. It contains the data “Hello, World[rq] to be loaded at
address 0.
/ARAA
SGVsbG8sIFdvcmxk/BAK/CARS/AAAA/EAA

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 94

srec_formatted_binary(5) File Formats Manual srec_formatted_binary(5)

NAME

srec_formatted_binary — Formatted Binary file format

DESCRIPTION
This is the PDP-11 paper tape format, described in the DEC-11-GGPC-D PDP-11 "Paper Tape Software
Programming Handbook" 1972.

The file starts with a character sequence which appears as an arrow when punched on 8-hole paper tape.
0x08, 0x1C, 0x2A, 0x49, 0x08, 0x00

Then follows a byte count, encoded big-endian in the low 4 bits of the next 4 bytes. The high bits should
be zero.

Then follows a OxFF byte.
The data follows, as many bytes as specified in the header.

The trailer consists of the following bytes:
0x00, 0x00,
and then a 2-byte checksum (big-endian).

The alternate header sequence
0x08, 0x1C, 0x3E, 0x6B, 0x08, 0x00
is followed by an 8-nibble big-endian byte count.

Size Multiplier
In general, binary data will expand in sized very little when represented with this format.
EXAMPLE
Here is a hex dump of a formatted binary file containing the data "Hello, World!".
0000: 08 1C 2A 49 08 00 00 00 ..*I....
0008: 00 OE FF 48 65 6C 6C 6F ...Hello
0010: 2C 20 57 6F 72 6C 64 21 , World!
0018: OA 00 00 04 735
COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 95

srec_forth(5) File Formats Manual srec_forth(5)

NAME
srec_forth — FORTH file format

DESCRIPTION
This format can be read by FORTH interpreters

The file starts with HEX to set the number base.
Each line contains the address, the byte and a store command, either C! for RAM or EEC! for EEPROM

EXAMPLE
Here is an example srec[hy]forth file. It contains the data “Hello, World” to be loaded at address 0x1000.

HEX

48 1000 C!
65 1001 C!
6C 1002 C!
6C 1003 C!
6F 1004 C!
2C 1005 cC!
20 1006 C!
57 1007 C!
6F 1008 C!
72 1009 C!
6C 100A C!
64 100B C!
0A 100C C!

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 96

srec_fpc(5) File Formats Manual srec_fpc(5)

NAME

srec_fpc — four packed code file format

SYNOPSIS
All ASCII based file formats have one disadvantage in common: they all need more than double the amount
of characters as opposed to the number of bytes to be sent. Address fields and checksums will add even
more characters. So the shorter the records, the more characters have to be sent to get the file across.

The FPC format may be used to reduce the number of characters needed to send a file in ASCII format,
although it still needs more characters than the actual bytes it sends. FPC stands for "Four Packed Code".
The reduction is accomplished by squeezing 4 real bytes into 5 ASCII characters. In fact every ASCII
character will be a digit in the base 85 number system. There aren’t enough letters, digits and punctuation
marks available to get 85 different characters, but if we use both upper case and lower case letters we will
manage. This implies that the FPC is case sensitive, as opposed to all other ASCII based file formats.

Base 85
The numbering system is in base 85, and is somewhat hard to understand for us humans who are usually
only familiar with base 10 numbers. Some of us understand base 2 and base 16 as well, but base 85 is for
most people something new. Luckily we don’t have to do any math with this number system. We just
convert a 32 bit number into a 5 digit number in base 85. A 32 bit number has a range of 4,294,967,296,
while a 5 digit number in base 85 has a range of 4,437,053,125, which is enough to do the trick. One
drawback is that we always have to send multiples of 4 bytes, even if we actually want to send 1, 2 or 3
bytes. Unused bytes are padded with zeroes, and are discarded at the receiving end.

The digits of the base 85 numbering system start at %, which represents the value of 0. The highest value
of a digit in base 85 is 84, and is represented by the character *z’. If you want to check this with a normal
ASCII table you will notice that we have used one character too many! Why? I don’t know, but for some
reason we have to skip the **’ character in the row. This means that after the *)’ character follows the '+’
character.

We can use normal number conversion algorithms to generate the FPC digits, with this tiny difference. We
have to check whether the digit is going to be equal or larger than the ASCII value for **’. If this is the
case we have to increment the digit once to stay clear of the **’. In base 85 MSD digits go first, like in all
number systems!

The benefit of this all is hopefully clear. For every 4 bytes we only have to send 5 ASCII characters, as
opposed to 8 characters for all other formats.

Records
Now we take a look at the the formatting of the FPC records. We look at the record at byte level, not at the
actual base 85 encoded level. Only after formatting the FPC record at byte level we convert 4 bytes at a
time to a 5 digit base 85 number. If we don’t have enough bytes in the record to fill the last group of 5
digits we will add bytes with the value of 0 behind the record.

’$ ‘ ss ‘ cc ‘ ffff ‘ aaaaaaaa | dddddddd

The field are defined as:
$ Every line starts with the character $, all other characters are digits of base 85.
Ss The checksum. A one byte 2’s-complement checksum of all bytes of the record.
cc The byte-count. A one byte value, counting all the bytes in the record minus 4.
ffff Format code, a two byte value, defining the record type.
aaaaaaaa

The address field. A 4 byte number representing the first address of this record.
dddddddd

The actual data of this record.

Reference Manual SRecord 97

srec_fpc(5) File Formats Manual srec_fpc(5)

Record Begin
Every record begins with the ASCII character "$". No spaces or tabs are allowed in a record. All other
characters in the record are formed by groups of 5 digits of base 85.

Checksum field
This field is a one byte 2’s-complement checksum of the entire record. To create the checksum make a one
byte sum from all of the bytes from all of the fields of the record:

Then take the 2’s-complement of this sum to create the final checksum. The 2’s-complement is simply
inverting all bits and then increment by 1 (or using the negative operator). Checking the checksum at the
receivers end is done by adding all bytes together including the checksum itself, discarding all carries, and
the result must be $00. The padding bytes at the end of the line, should they exist, should not be included
in checksum. But it doesn’t really matter if they are, for their influence will be 0 anyway.

Byte Count
The byte count cc counts the number of bytes in the current record minus 4. So only the number of address
bytes and the data bytes are counted and not the first 4 bytes of the record (checksum, byte count and
format flags). The byte count can have any value from 0 to 255.

Usually records have 32 data bytes. It is not recommended to send too many data bytes in a record for that
may increase the transmission time in case of errors. Also avoid sending only a few data bytes per record,
because the address overhead will be too heavy in comparison to the payload.

Format Flags
This is a 2 byte number, indicating what format is represented in this record. Only a few formats are
available, so we actually waste 1 byte in each record for the sake of having multiples of 4 bytes.

Format code 0 means that the address field in this record is to be treated as the absolute address where the
first data byte of the record should be stored.

Format code 1 means that the address field in this record is missing. Simply the last known address of the
previous record +1 is used to store the first data byte. As if the FPC format wasn’t fast enough already ;-)

Format code 2 means that the address field in this record is to be treated as a relative address. Relative to
what is not really clear. The relative address will remain in effect until an absolute address is received
again.

Address Field
The first data byte of the record is stored in the address specified by the Address field aaaaaaaa. After
storing that data byte, the address is incremented by 1 to point to the address for the next data byte of the
record. And so on, until all data bytes are stored.

The length of the address field is always 4 bytes, if present of course. So the address range for the FPC
format is always 2*%32.

If only the address field is given, without any data bytes, the address will be set as starting address for
records that have no address field.

Addresses between records are non sequential. There may be gaps in the addressing or the address pointer
may even point to lower addresses as before in the same file. But every time the sequence of addressing
must be changed, a format 0 record must be used. Addressing within one single record is sequential of
course.

Data Field
This field contains O or more data bytes. The actual number of data bytes is indicated by the byte count in
the beginning of the record less the number of address bytes. The first data byte is stored in the location
indicated by the address in the address field. After that the address is incremented by 1 and the next data
byte is stored in that new location. This continues until all bytes are stored. If there are not enough data
bytes to obtain a multiple of 4 we use 0x00 as padding bytes at the end of the record. These padding bytes
are ignored on the receiving side.

Reference Manual SRecord 98

srec_fpc(5) File Formats Manual srec_fpc(5)

End of File
End of file is recognized if the first four bytes of the record all contain 0x00. In base 85 this will be

“$99999”

3%$%%%”. This is the only decent way to terminate the file.

Size Multiplier
In general, binary data will expand in sized by approximately 1.7 times when represented with this format.

Example
Now it’s time for an example. In the first table you can see the byte representation of the file to be
transferred. The 4th row of bytes is not a multiple of 4 bytes. But that does not matter, for we append $00
bytes at the end until we do have a multiple of 4 bytes. These padding bytes are not counted in the byte
count however!
D81400000000B000576F77212044696420796F7520726561
431400000000B0106C6C7920676F207468726F7567682061
361400000000B0206C6C20746861742074726F75626C6520
591100000000B030746F207265616420746869733F000000
00000000
Only after converting the bytes to base 85 we get the records of the FPC type file format presented in the
next table. Note that there is always a multiple of 5 characters to represent a multiple of 4 bytes in each
record.
$kL&@h%%, :, B.\?00EPuX0K3r00JI))
$; UPR’ %%, : <Hn&FCG:at<GVF (; GOwIw
$7FD1p%%, : LHmy : >GTV%/KJ7@GE [kYz
SB[6\;%%, : \KIN?GFWY/gKI1G5:;—_e
S$%%%%

As you can see the length of the lines is clearly shorter than the original ASCII lines.

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/fpc.htm

AUTHOR

This man page was taken from the above Web page. It was written by San Bergmans
<sanmail @bigfoot.com>

For extra points: Who invented this format? Where is it used?

Reference Manual SRecord 99

srec_idt(5) File Formats Manual srec_idt(5)

NAME
srec_idt — IDT/sim binary file format

DESCRIPTION
This format comes from Integrated Device Technology (IDT) System Integration Manager (IDT/sim).

It is almost identical to the Motorola S-Record format, except that most of each record is in binary, and
there is no line termination character. The ’S’ and tag characters are the same (ascii), however all other
bytes are emitted as binary, rather than as a 2-byte hexadecimal ascii encoding.

SEE ALSO

srec_motorola(5)
The orginal Motorola S-Record format.

srec_wilson(5)
For a different spin on making S-Record into a more densely packed binary file.

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 100

srec_intel16(5) File Formats Manual srec_intel16(5)

NAME

srec_intel16 — Intel Hexadecimal 16-bit file format specification

DESCRIPTION
This format is also known as the INHX16 format.

This document describes the hexadecimal object file format for 16-bit microprocessors.

This format is very similar to the srec_intel(5) format, except that the addresses are word addresses. The
count field is a word count.

The hexadecimal representation of binary is coded in ASCII alphanumeric characters. For example, the
8-bit binary value 0011-1111 is 3F in hexadecimal. To code this in ASCII, one 8-bit byte containing the
ASCII code for the character *3” (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code for
the character "F’ (0100-0110 or 0x46) are required. For each byte value, the high-order hexadecimal digit
is always the first digit of the pair of hexadecimal digits. This representation (ASCII hexadecimal) requires
twice as many bytes as the binary representation.

A hexadecimal object file is blocked into records, each of which contains the record type, length, memory
load address and checksum in addition to the data. There are currently six (6) different types of records that
are defined, not all combinations of these records are meaningful, however. The record are:

» Data Record

* End of File Record

» Extended Segment Address Record
» Start Segment Address Record

* Extended Linear Address Record

» Start Linear Address Record

General Record Format
Record | Record Load Record Data Check

Mark Length Offset | Type sum
Record Mark.
Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon (*:””)
character.
Record Length

Each record has a Record Length field which specifies the number of 16-bit words of information
or data which follows the Record Type field of the record. This field is one byte, represented as
two hexadecimal characters. The maximum value of the Record Length field is hexadecimal *FF’
or 255.

Load Offset
Each record has a Load Offset field which specifies the 16-bit starting load offset of the data
words, therefore this field is only used for Data Records (if the words are loaded as bytes, the
address needs to be doubled). In other records where this field is not used, it should be coded as
four ASCII zero characters (“0000” or 0x30303030). This field one 16-bit word, represented as
four hexadecimal characters.

Record Type
Each record has a Record Type field which specifies the record type of this record. The Record
Type field is used to interpret the remaining information within the record. This field is one byte,
represented as two hexadecimal characters. The encoding for all the current record types are:

0 Data Record
1 End of File Record

Reference Manual SRecord 101

srec_intel16(5) File Formats Manual srec_intel16(5)

5 Execution Start Address Record

Data Each record has a variable length Data field, it consists of zero or more 16-bit words encoded as
set of 4 hexadecimal digits, most significant digit first. The interpretation of this field depends on
the Record Type field.

Checksum

Each record ends with a Checksum field that contains the ASCII hexadecimal representation of
the two’s complement of the 8-bit bytes that result from converting each pair of ASCII
hexadecimal digits to one byte of binary, from and including the Record Length field to and
including the last byte of the Data field. Therefore, the sum of all the ASCII pairs in a record
after converting to binary, from the Record Length field to and including the Checksum field, is
ZEero.

Data Record
(8-, 16- or 32-bit formats)

Record | Record | Load Record Data Check

Mark Length Offset | Type sum

(64:”)
The Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes that
make up a portion of a memory image.

The contents of the individual fields within the record are:

Record Mark
This field contains Ox3A, the hexadecimal encoding of the ASCII colon (*:”’) character.

Record Length
The field contains two ASCII hexadecimal digits that specify the number of 16-bit data words in
the record. The maximum value is 255 decimal.

Load Offset
This field contains four ASCII hexadecimal digits representing the word address at which the first
word of the data is to be placed. (For an exquivalent bytes address, double it.)

Record Type
This field contains 0x3030, the hexadecimal encoding of the ASCII character “00”, which
specifies the record type to be a Data Record.

Data This field contains sets of four ASCII hexadecimal digits, one set for each 16-bit data word, most
significant digit first.

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and Data
fields.

Execution Start Address Record

Record | Record | Load Record | EIP (4 Check
Mark Length | Offset | Type bytes) sum
) G 0))
The Execution Start Address Record is used to specify the execution start address for the object file. This
is where the loader is to jump to begin execution once the hex load is complete.

The Execution Start Address Record can appear anywhere in a hexadecimal object file. If such a record is
not present in a hexadecimal object file, a loader is free to assign a default execution start address.

The contents of the individual fields within the record are:

Record mark
This field contains 0x3A, the hexadecimal encoding of the ASCII colon (*“:”") character.

Reference Manual SRecord 102

srec_intel16(5) File Formats Manual srec_intel16(5)

Record length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters “02”, which is the
length, in bytes, of the EIP register content within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3035, the hexadecimal encoding of the ASCII character “05”, which
specifies the record type to be a Start Address Record.

EIP This field contains eight ASCII hexadecimal digits that specify the address. The field is encoded
big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, and EIP
fields.

End of File Record
This shall be the last record in the file.

Record | Record Load Record | Check
Mark Length Offset | Type sum

") 0) 0) Q) (0OxFF)
The End of File Record specifies the end of the hexadecimal object file.

The contents of the individual fields within the record are:

Record mark
This field contains Ox3A, the hexadecimal encoding of the ASCII colon (*:”’) character.

Record Length
The field contains 0x3030, the hexadecimal encoding of the ASCII characters “00”. Since this
record does not contain any Data bytes, the length is zero.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3031, the hexadecimal encoding of the ASCII character “01”, which
specifies the record type to be an End of File Record.

Checksum
This field contains the check sum an the Record Length, Load Offset, and Record Type fields.
Since all the fields are static, the check sum can also be calculated statically, and the value is
0x4646, the hexadecimal encoding of the ASCII characters “FF”.

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format.

Reference Manual SRecord 103

srec_intel16(5) File Formats Manual srec_intel16(5)

EXAMPLE
Here is an example INHX16 file. It contains the data “Hello, World” to be loaded at address 0.
:0700000065486C6C2C6F5720726F646CFFO0AAS
:00000001FF

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the "srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 104

srec_intel(5) File Formats Manual srec_intel(5)

srec_intel — Intel Hexadecimal object file format specification

DESCRIPTION

This format is also known as the Intel MCS-86 Object format.

This document describes the hexadecimal object file format for the Intel 8-bit, 16-bit, and 32-bit
microprocessors. The hexadecimal format is suitable as input to PROM programmers or hardware
emulators.

Hexadecimal object file format is a way of representing an absolute binary object file in ASCII. Because
the file is in ASCII instead of binary, it is possible to store the file is non-binary medium such as paper-
tape, punch cards, etc.; and the file can also be displayed on CRT terminals, line printers, etc.. The 8-bit
hexadecimal object file format allows for the placement of code and data within the 16-bit linear address
space of the Intel 8-bit processors. The 16-bit hexadecimal format allows for the 20-bit segmented address
space of the Intel 16-bit processors. And the 32-bit format allows for the 32-bit linear address space of the
Intel 32-bit processors.

——address-length=2 “i8hex” 16-bit
—-—address-length=3 “il6hex” 20-bit segmented
——-address-length=4 “i32hex” 32-bit linear

The hexadecimal representation of binary is coded in ASCII alphanumeric characters. For example, the
8-bit binary value 0011-1111 is 3F in hexadecimal. To code this in ASCII, one 8-bit byte containing the
ASCII code for the character *3” (0011-0011 or 0x33) and one 8-bit byte containing the) ASCII code for
the character "F’ (0100-0110 or 0x46) are required. For each byte value, the high-order hexadecimal digit
is always the first digit of the pair of hexadecimal digits. This representation (ASCII hexadecimal) requires
twice as many bytes as the binary representation.

A hexadecimal object file is blocked into records, each of which contains the record type, length, memory
load address and checksum in addition to the data. There are currently six (6) different types of records that
are defined, not all combinations of these records are meaningful, however. The record are:

* Data Record (8-, 16-, or 32-bit formats)

* End of File Record (8-, 16-, or 32-bit formats)

* Extended Segment Address Record (16- or 32-bit formats)
» Start Segment Address Record (16- or 32-bit formats)

» Extended Linear Address Record (32-bit format only)

» Start Linear Address Record (32-bit format only)

General Record Format

Record | Record | Load Record | Data Check

Mark Length | Offset Type sum
Record Mark.
Each record begins with a Record Mark field containing 0x3A, the ASCII code for the colon (*:””)
character.
Record Length

Each record has a Record Length field which specifies the number of bytes of information or data
which follows the Record Type field of the record. This field is one byte, represented as two
hexadecimal characters. The maximum value of the Record Length field is hexadecimal "FF’ or
255.

Load Offset
Each record has a Load Offset field which specifies the 16-bit starting load offset of the data
bytes, therefore this field is only used for Data Records. In other records where this field is not
used, it should be coded as four ASCII zero characters (“0000” or 0x30303030). This field is two

Reference Manual SRecord 105

srec_intel(5) File Formats Manual srec_intel(5)

byte, represented as four hexadecimal characters.

Record Type
Each record has a Record Type field which specifies the record type of this record. The Record
Type field is used to interpret the remaining information within the record. This field is one byte,
represented as two hexadecimal characters. The encoding for all the current record types are:

0 Data Record
1 End of File Record
2 Extended Segment Address Record
3 Start Segment Address Record
4 Extended Linear Address Record
5 Start Linear Address Record
Data Each record has a variable length Data field, it consists of zero or more bytes encoded as pairs of
hexadecimal digits. The interpretation of this field depends on the Record Type field.
Checksum

Each record ends with a Checksum field that contains the ASCII hexadecimal representation of
the two’s complement of the 8-bit bytes that result from converting each pair of ASCII
hexadecimal digits to one byte of binary, from and including the Record Length field to and
including the last byte of the Data field. Therefore, the sum of all the ASCII pairs in a record
after converting to binary, from the Record Length field to and including the Checksum field, is
Zero.

Extended Linear Address Record
(32-bit format only)

Record Record Load Record ULBA (2 Check
Mark Length Offset Type bytes) sum
(")) (0) “)

The 32-bit Extended Linear Address Record is used to specify bits 16-31 of the Linear Base Address
(LBA), where bits 0-15 of the LBA are zero. Bits 16-31 of the LBA are referred to as the Upper Linear
Base Address (ULBA). The absolute memory address of a content byte in a subsequent Data Record is)
obtained by adding the LBA to an offset calculated by adding the Load Offset field of the containing Data
Record to the index of the byte in the Data Record (0, 1, 2, ... n). This offset addition is done) modulo 4G
(i.e. 32-bits from OxFFFFFFFF to 0x00000000) results in wrapping around from the end to the beginning of
the 4G linear address defined by the LBA. The linear address at which a particular byte is loaded is
calculated as:

(LBA + DRLO + DRI) MOD 4G
where:

DRLO is the Load Offset field of a Data Record.

DRI is the data byte index within the Data Record.
When an Extended Linear Address Record defines the value of LBA, it may appear anywhere within a
32-bit hexadecimal object file. This value remains in effect until another Extended Linear Address Record
is encountered. The LBA defaults to zero until an Extended Linear Address Record is encountered. The
contents of the individual fields within the record are:

Record Mark
This field contains Ox3A, the hexadecimal encoding of the ASCII colon (*:”’) character.

Record Length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters “02”, which is the
length, in bytes, of the ULBA data information within this record.

Reference Manual SRecord 106

srec_intel(5) File Formats Manual srec_intel(5)

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3034, the hexadecimal encoding of the ASCII character “04”, which
specifies the record type to be an Extended Linear Address Record.

ULBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Linear Base
Address value. The value is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and ULBA
fields.

Extended Segment Address Record
(16- or 32-bit formats)

Record Record Load Record USBA (2 Check
Mark Length Offset Type bytes) sum
() (2) (0) (2)

The 16-bit Extended Segment Address Record is used to specify bits 4-19 of the Segment Base Address
(SBA), where bits 0-3 of the SBA are zero. Bits 4-19 of the SBA are referred to as the Upper Segment
Base Address (USBA). The absolute memory address of a content byte in a subsequent Data Record is)
obtained by adding the SBA to an offset calculated by adding the Load Offset field of the containing Data
Record to the index of the byte in the Data Record (0, 1, 2, ... n). This offset addition is done modulo 64K
(i.e. 16-bits from OxFFFF to 0x0000 results in wrapping around from the end to the beginning of the 64K
segment defined by the SBA. The address at which a particular byte is loaded is calculated as:

SBA + (DRLO + DRI) MOD 64K)
where:

DRLO is the LOAD OFFSET field of a Data Record.
DRI is the data byte index within the Data Record.

When an Extended Segment Address Record defines the value of SBA, it may appear anywhere within a
16-bit hexadecimal object file. This value remains in effect until another Extended Segment Address
Record is encountered. The SBA defaults to zero until an Extended Segment Address Record is
encountered.

The contents of the individual fields within the record are:

Record Mark
This field contains Ox3A, the hexadecimal encoding of the ASCII colon (*:”’) character.

Record Length
The field contains 0x3032, the hexadecimal encoding of the ASCII characters *02’, which is the
length, in bytes, of the USBA data information within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters 0000°, since
this field is not used for this record.

Record Type
This field contains 0x3032, the hexadecimal encoding of the ASCII character “02”, which
specifies the record type to be an Extended Segment Address Record.

USBA This field contains four ASCII hexadecimal digits that specify the 16-bit Upper Segment Base
Address value. The field is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, and USBA
fields.

Reference Manual SRecord 107

srec_intel(5) File Formats Manual srec_intel(5)

Data Record
(8-, 16- or 32-bit formats)

Record | Record | Load Record Data Check

Mark Length Offset | Type sum

)
The Data Record provides a set of hexadecimal digits that represent the ASCII code for data bytes that
make up a portion of a memory image. The method for calculating the absolute address (linear in the 8-bit
and 32-bit case and segmented in the 16-bit case) for each byte of data is described in the discussions of the
Extended Linear Address Record and the Extended Segment Address Record.

The contents of the individual fields within the record are:

Record Mark
This field contains Ox3A, the hexadecimal encoding of the ASCII colon (*:”’) character.

Record Length
The field contains two ASCII hexadecimal digits that specify the number of data bytes in the
record. The maximum value is 255 decimal.

Load Offset
This field contains four ASCII hexadecimal digits representing the offset from the LBA (see
Extended Linear Address Record see Extended Segment Address Record) defining the address
which the first byte of the data is to be placed.

Record Type
This field contains 0x3030, the hexadecimal encoding of the ASCII character “00”, which
specifies the record type to be a Data Record.

Data This field contains pairs of ASCII hexadecimal digits, one pair for each data byte.

Checksum
This field contains the check sum on the Record Length, Load Offset, Record Type, and Data
fields.

Note: Care must be taken when the addresses with an record span the end of addressing. The behaviour is
different for linear and segmented addressing modes.

linear If a record starts just short of 2**32, and would finish after 2**32, the later part of the record
wraps around to address 0. TP 8n segment If a record starts just for of a 2**16 boundary, and
would finish after that 2**16 boundary, the later part of the record wraps around to address 0
within the same segment (not the next segment).

The srec_cat(1) program will never output records such as these, it will always produce separate records on
output.

Start Linear Address Record
(32-bit format only)

Record | Record | Load. Record | EIP (4 Check
Mark Length | Offset | Type bytes) sum

) “4) () &)

The Start Linear Address Record is used to specify the execution start address for the object file. The value
given is the 32-bit linear address for the EIP register. Note that this record only specifies the code address
within the 32-bit linear address space of the 80386. If the code is to start execution in the real mode of the
80386, then the Start Segment Address Record should be used instead, since that record specifies both the
CS and IP register contents necessary for real mode.

The Start Linear Address Record can appear anywhere in a 32-bit hexadecimal object file. If such a record
is not present in a hexadecimal object file, a loader is free to assign a default execution start address.

The contents of the individual fields within the record are:

Reference Manual SRecord 108

srec_intel(5) File Formats Manual srec_intel(5)

Record mark
This field contains Ox3A, the hexadecimal encoding of the ASCII colon (*:””) character.

Record length
The field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is the
length, in bytes, of the EIP register content within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3035, the hexadecimal encoding of the ASCII character “05”, which
specifies the record type to be a Start Linear Address Record.

EIP This field contains eight ASCII hexadecimal digits that specify the 32-bit EIP register contents.
The field is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, and EIP
fields.

Start Segment Address Record
(16- or 32-bit formats)

Record | Record | Load. Record | CS (2 P (2 Check
Mark Length Offset | Type bytes) bytes) sum
") “) (0) 3)

The Start Segment Address Record is used to specify the execution start address for the object file. The
value given is the 20-bit segment address for the CS and IP registers. Note that this record only specifies
the code address within the 20-bit segmented address space of the 8086/80186. The Start Segment Address
Record can appear anywhere in a 16-bit hexadecimal object file. If such a record is not present in a
hexadecimal object file, a loader is free to assign a default start address.

The contents of the individual fields within the record are:

Record Mark
This field contains Ox3A, the hexadecimal encoding of the ASCII colon (*:”’) character.

Record Length
The field contains 0x3034, the hexadecimal encoding of the ASCII characters “04”, which is the
length, in bytes, of the CS and IP register contents within this record.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record.

Record Type
This field contains 0x3033, the hexadecimal encoding of the ASCII character 03’, which
specifies the record type to be a Start Segment Address Record.

CS This field contains four ASCII hexadecimal digits that specify the 16-bit CS register contents.
The field is encoded big-endian (most significant digit first).

1P This field contains four ASCII hexadecimal digits that specify the 16-bit IP register contents.
The field is encoded big-endian (most significant digit first).

Checksum
This field contains the check sum on the Record length, Load Offset, Record Type, CS, and IP
fields.

End of File Record

(8-, 16-, or 32-bit formats)

Reference Manual SRecord 109

srec_intel(5) File Formats Manual srec_intel(5)

Record | Record Load Record | Check
Mark Length Offset | Type sum

) 0) 0) Q) (OxFF)
The End of File Record specifies the end of the hexadecimal object file.

The contents of the individual fields within the record are:

Record mark
This field contains Ox3A, the hexadecimal encoding of the ASCII colon (*:”’) character.

Record Length
The field contains 0x3030, the hexadecimal encoding of the ASCII characters “00”. Since this
record does not contain any Data bytes, the length is zero.

Load Offset
This field contains 0x30303030, the hexadecimal encoding of the ASCII characters “0000”, since
this field is not used for this record. In ancient times, i8hex used this for the start address record.

Record Type
This field contains 0x3031, the hexadecimal encoding of the ASCII character “01”, which
specifies the record type to be an End of File Record.

Checksum
This field contains the check sum an the Record Length, Load Offset, and Record Type fields.
Since all the fields are static, the check sum can also be calculated statically, and the value is
0x4646, the hexadecimal encoding of the ASCII characters “FF”.

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format.

EXAMPLE
Here is an example Intel hex file. It contains the data “Hello, World” to be loaded at address O.
:0D00000048656C6CHEF2C20576F726C640AA1
:00000001FF

REFERENCE
This information comes (very indirectly) from Microprocessors and Programmed Logic, Second Edition,
Kenneth L. Short, 1987, Prentice-Hall, ISBN 0-13-580606-2.

http://en.wikipedia.org/wiki/Intel_HEX
COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran E-Mail: scottfinneran@yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au
Derivation

This manual page is derived from a file marked as follows:
Intel Hexadecimal Object File Format Specification; Revision A, 1/6/88

Disclaimer: Intel makes no representation or warranties with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Intel
reserves the right to revise this publication from time to time in the content hereof without obligation of
Intel to notify any person of such revision or changes. The publication of this specification should not be
construed as a commitment on Intel’s part to implement any product.

Reference Manual SRecord 110

srec_logisim.5(5) File Formats Manual srec_logisim.5(5)

NAME
srec_logisim — format Logisim EPROM load files

DESCRIPTION
The file format used for image files is intentionally simple; this permits you to write a program, such as an
assembler, that generates memory images that can then be loaded into memory. As an example of this file
format, if we had a 256-byte memory whose first five bytes were 2, 3, 0, 20, and —1, and all subsequent
values were 0, then the image would be the following text file.
v2.0 raw

02 03 00 14 ff
The first line identifies the file format used (currently, there is only one file format recognized). Subsequent
values list the values in hexadecimal, starting from address O; you can place several such values on the
same line. Logisim will assume that any values unlisted in the file are zero.

The image file can use run-length encoding; for example, rather than list the value 00 sixteen times in a
row, the file can include 16*00 rather than repeat 00 sixteen times. Notice than the number of repetitions is
written in base 10. Files produced by Logisim will use run-length encoding for runs of at least four values

Size Multiplier
In general, binary data will expand in sized by approximately 2.95 times when represented with this format.

Commentary
This format is particularly deficient.

* The is no way for changing address in-flight. And therefore the format can’t have holes in the data.
* There are no checksums, or any other error checking.
* There is no provision for a comment header, as distinct to the “v2.0 raw” magic number.

* There is no provision for an execution start adddress.

SEE ALSO
http://ozark.hendrix.edu/"burch/logisim/docs/2.3.0/guide/mem/menu.html

COPYRIGHT
srec_logisim.5 version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_logisim.5 program comes with ABSOLUTELY NO WARRANTY; for details use the
*srec_logisim.5 —VERSion License’ command. This is free software and you are welcome to redistribute it
under certain conditions; for details use the ’srec_logisim.5 —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 111

srec_mem(5) File Formats Manual srec_mem(5)

NAME

srec_mem — Lattice Memory Initialization format

DESCRIPTION
A Lattice Memory Initialization format (.mem), by Lattice Semiconductor, file is an ASCII text file that
consists of a header followed by lines of memory data.

Syntax
The data must be in one of the following formats: Bin (binary), Hex (hexadecimal), or Address-Hex
(described below).

For hexadecimal values, both upper and lower case can be used. If the data has fewer bits than the specified
data width, the most significant bits are filled with 0. Any address not specified will be filled with 0.

Comments can be added at any point after the header (defined below) by starting the comment with a
pound sign (#) or two slashes (/). The comment then includes everything to the end of the line. Comments
may be added to any of the data, but never add comments to the header.

Header
A .mem file starts with a header, which declares the file format, memory size, and address and data display
radix for Memory Generator. The syntax of the header is:
#Format=Bin | Hex | AddrHex
#Depth=1 fo 65536
#Width=1 to 256
#AddrRadix=index-number
#DataRadix=index-number

#Data
The index-number can be one of the following numbers. AddrRadix and DataRadix can have different
values.

Binary: 0

Octal: 1

Decimal: 2

Hexadecimal: 3

For example, the following header says the .mem file is using the binary format for a 32x8 memory. When
displayed in Memory Generator, the address will be shown in hexadecimal and the data will be shown in
binary.

#Format=Bin

#Depth=32

#Width=8

#AddrRadix=3

#DataRadix=0

#Data

Bin and Hex Formats
The data is represented in binary or hexadecimal format. Each line of data specifies the contents for one
memory location, starting with address 0. That is, the first line is for address 0, the second line is for
address 1, and so on. For each line, the data is interpreted as least significant bit on the right.

For example, in the Bin format, the following lines will initialize address O to “00011011”, address 1 to
“11111010” (assuming it is a 32x8 memory).

for a 32x8 memory

11011

11111010

In the Hex format, the following lines will initialize address O to “003B”, address 1 to “FBOA” (assuming it
is a 32x16 memory).

for a 32x16 memory

3B

Reference Manual SRecord 112

srec_mem(5) File Formats Manual srec_mem(5)

FBOA

AddrHex
The data is represented in hexadecimal format. Each line consists of an address followed by a colon and
then any number of data words, separated by spaces:
address: data data> data...
The data will be applied starting at <address> and filling in sequentially from there.

For example:

A0:03 F3 3E 4F

B2:3B 9F
will initialize AO with 03, A1 with F3, A2 with 3E, A3 with 4F, B2 with 3B, and B3 with OF. The other
addresses will be initialized to 0. So A4 through B1 will be set to 0.

See Also
http://help.latticesemi.com/docs/webhelp/eng/wwhelp/wwhimpl/common/html/wwhelp.htm#href=Design%20Entry/memory _

Size Multiplier
The size multiplier depends on the width selected. As files grow larger, their size multipliers will approach
those in the table, from above.

Width Linux Windows

8 2.96 3.0
16 247 2.5
32 2.25 2.28
64 2.13 2.15
Byte Order
This format is implicitly big-endian. Use a —byte-swap filter if you need something different.
COPYRIGHT

srec_mem version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_mem program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_mem
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_mem —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 113

srec_mif(5)

NAME

File Formats Manual srec_mif(5)

srec_mif — Memory Initialization File (MIF) format

DESCRIPTION

Reference Manual

This format was invented by Altera.

An ASCII text file (with the extension .mif) that specifies the initial content of a memory block (CAM,
RAM, or ROM), that is, the initial values for each address. This file is used during project compilation
and/or simulation. You can create a Memory Initialization File in the Memory Editor, the In-System
Memory Content Editor, or the Quartus II Text Editor.

A Memory Initialization File serves as an input file for memory initialization in the Compiler and
Simulator. You can also use a Hexadecimal (Intel-Format) File (.hex) to provide memory initialization data.

A Memory Initialization File contains the initial values for each address in the memory. A separate file is
required for each memory block. In a Memory Initialization File, you must specify the memory depth and
width values. In addition, you can specify data radixes as binary (BIN), hexadecimal (HEX), octal (OCT),
signed decimal (DEC), or unsigned decimal (UNS) to display and interpret addresses and data values. Data
values must match the specified data radix.

When creating a Memory Initialization File in the Quartus II Text Editor, you must start with the DEPTH,
WIDTH, ADDRESS_RADIX and DATA_RADIX keywords. You can use Tab "" and Space " " characters
as separators, and insert multiple lines of comments with the percent "%" character, or a single comment
with double dash "——" characters. Address:data pairs represent data contained inside certain memory
addresses and you must place them between the CONTENT BEGIN and END keywords, as shown in the
following examples.

[)

% multiple-line comment
multiple-line comment %

—— single-line comment

DEPTH = 8; -

WIDTH = 32; —

The
The

size of data in bits
size of memory in words

ADDRESS_RADIX = HEX; —-— The radix for address values
DATA_RADIX = BIN; —-— The radix for data values
CONTENT —-— start of (address data pairs)
BEGI

00 : 00000000; —-— memory address data

01 : 00000001;
02 : 00000010;

03 : 00000011,
04 : 00000100;
05 : 00000101;
06 : 00000110;
07 : 00000111,
08 : 00001000;
09 : 00001001,
0A : 00001010;
0B 00001011;
0C : 00001100;
END;

There are several ways to specify the address and data, as seen in the following table:

Notation Interpretation Example

A:D; Addr[A]=D 2 : 4
Address: 01234567
Data: 00400000

SRecord 114

srec_mif(5) File Formats Manual srec_mif(5)

[AO..A1]:D; Addr[AO] to [A1] contain [0..7] : 6

(See note below.) data D Address: 01234567
Data: 66666666

[AO..A1]: DODI1; Addr[AO] =DO0, [0..7] : 5 6

(See note below.) Addr[AO+1] =Dl1, Address: 01234567
Addr[A0+2] = DO, Data: 56565656
Addr[A0+3] =Dl1,
until AO+n = Al

A :DO0DI1 D2; Addr[A] = DO, 2 : 456
Addr[A+1] =Dl1, Address: 01234567
Addr[A+2] =D2 Data: 00456000

Note: The address range forms are limited in SRecord, the range must be less than 255 bytes. SRecord will
never write an address range.

Note: When reading MIF file, SRecord will round up the number of bits in the WIDTH to be a multiple of
8. Multi-byte values will be laid down in memory as big-endian.

An ASCII text file (with the extension .mif) that specifies the initial content of a memory block (CAM,
RAM, or ROM), that is, the initial values for each address. This file is used during project compilation
and/or simulation. A MIF contains the initial values for each address in the memory. In a MIF, you are
also required to specify the memory depth and width values. In addition, you can specify the radixes used
to display and interpret addresses and data values.

SIZE MULTIPLIER

In general, binary data will expand in sized by approximately 3.29 times when 8-bit data is represented
with this format (16 bit = 2.75, 32 bit = 2.47, 64 bit = 2.34).

EXAMPLE
Following is a sample MIF:
DEPTH = 32; % Memory depth and width are required %
% DEPTH is the number of addresses %
WIDTH = 14; % WIDTH is the number of bits of data per word %
% DEPTH and WIDTH should be entered as decimal numbers %
ADDRESS_RADIX = HEX; % Address and value radixes are required %

DATA_RADIX = HEX; % Enter BIN, DEC, HEX, OCT, or UNS; unless %

% otherwise specified, radixes = HEX %
——Specify values for addresses, which can be single address or range
CONTENT
BEGIN
[0..F]: 3FFF; % Range: Every address from 0 to F = 3FFF %
6 : F; % Single address: Address 6 = F %
8 : F E 5; % Range starting from specific address %
- % Addr([8] = F, Addr[9] = E, Addr[A] = 5 %
END;

REFERENCE
The above information was gleaned from the following sources:
http://www.altera.com/support/software/nativelink/quartus2/glossary/def_mif.html
http://www.mil.ufl.edu/4712/docs/mif_help.pdf

COPYRIGHT
srec_mif version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_mif program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_mif
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_mif —VERSion License’ command.

Reference Manual SRecord 115

srec_mif(5) File Formats Manual srec_mif(5)

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 116

srec_mips_flash.5(5) File Formats Manual srec_mips_flash.5(5)

NAME
srec_mips_flash — MIPS-Flash file format

DESCRIPTION
The MIPS SDE tool chain has a convert program that is able to output this format. I have no idea what
reads it, some kind of flash programmer I suppose.

Format
The file must start with *!R’ to reset the state machine. White space appears to be ignored, except as it
serves to separate tokens.

Data is presented as 32-bit hexadecimal numbers, in the normal big-endian text number format. To write
them to memory, you have to know if the target is big-endian or little-endian. for little endian targets,
reverse the order of the bytes in this number.

The eight bytes following a *>’ are a sort of comment. The SDE code reads like they are displayed in the
flash programmer as a kind of progress indicator.

The number following * @’ is a new address for the following data.

Each segment must be erased before it can be written, this is done with the *!E’ command. Each segment is
assumed to be 128kB in size.

Special segments must unlocked (with the *!C’ command) and locked again (with the ’!S’ command).
This file format contains no checksum mechanism.

Command Line Options
This format is specified using one of the —-Mips-Flash-Big_Endian or —Mips-Flash-Little_Endian
options. The endian-ness must be specified on the command line, because there is nothing in the file
contents to indicate the endian-ness of the data it contains.

Size Multiplier
In general, binary data will expand in sized by approximately 2.3 times when represented with this format
(worse if you use shorter lines).

EXAMPLE
Here is an example MIPS-Flash file. It contains the data “Hello, World” to be loaded at bytes address
0x0000 (but remember, the file contents are always multiples of four bytes).
'R
>00000xxx Q00000000 !'E
@00000000
>00000000
48656C6C 6F2C2057 6F726C64 210A0000
>#DL_DONE
>FINISHED

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

Reference Manual SRecord 117

srec_mips_flash.5(5) File Formats Manual srec_mips_flash.5(5)

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au
COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the "srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 118

srec_mos_tech(5) File Formats Manual srec_mos_tech(5)

NAME
srec_mos_tech — MOS Technology file format

DESCRIPTION
The MOS Technology format allows binary files to be uploaded and downloaded between between a
computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board for
microcontrollers and microprocessors.

The Lines
Each line consists of 5 fields. These are the length field, address field, data field, and the checksum. The
lines always start with a semicolon (;) character.

The Fields

; ‘ Length ‘ Address ‘ Data ‘ Checksum ‘ CRLF‘

Length The record length field is a 2 character (1 byte) field that specifies the number of data bytes in the
record. Typically this is 24 or less.

Address This is a 2-byte address that specifies where the data in the record is to be loaded into memory,
big-endian.

Data The data field contains the executable code, memory-loadable data or descriptive information to
be transferred.

Checksum
The checksum is an 2-byte field that represents the least significant two bytes of the the sum of
the values represented by the pairs of characters making up the record’s length, address, and data
fields, big-endian.

End of File
The final line should have a data length of zero, and the data line count in the address field. The checksum
is not the usual checksum, it is instead a repeat of the data line count.

Size Multiplier
In general, binary data will expand in sized by approximately 2.54 times when represented with this format.

EXAMPLE
Here is an example MOS Technology format file. It contains the data “Hello, World” to be loaded at
address 0.
;0C000048656C6CH6F2C20576F726C640454
;0000010001

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran E-Mail: scottfinneran@yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

KIM-1 User Manual — Appendix F — Paper Tape Format
(The following information is reproduced from http.//users.telenet.be/kim1-6502/6502/usrman. htmI#F just
in case it vanishes from the Web.)

The paper tape LOAD and DUMP routines store and retrieve data in a specific format designed to insure
error free recovery. Each byte of data to be stored is converted to two half bytes. The half bytes (whose
possible values are 0 to F HEX) are translated into their ASCII equivalents and written out onto paper tape

Reference Manual SRecord 119

srec_mos_tech(5) File Formats Manual srec_mos_tech(5)

in this form.

Each record outputted begins with a “;” character (ASCII 3B) to mark the start of a valid record. The next
byte transmitted (18HEX) or (24 decimal) is the number of data bytes contained in the record. The record’s
starting address High (1 byte, 2 characters), starting address Lo (1 byte, 2 characters), and data (24 bytes,
48 characters) follow. Each record is terminated by the record’s check-sum (2 bytes, 4 characters), a
carriage return (ASCII OD), line feed (ASCII 0OA), and six “NULL” characters (ASCII 00). (NULL
characters cause a blank area on the paper tape.)

The last record transmitted has zero data bytes (indicated by ;00) The starting address field is replaced by a
four digit Hex number representing the total number of data records contained in the transmission, followed
by the records usual check-sum digits. An “XOFF” character ends the transmission.
;180000FFEEDDCCBBAA0099887766554433221122334455667788990AFC
;0000010001
During a “LOAD” all incoming data is ignored until a *“;” character is received. The receipt of non ASCII
data or a mismatch between a records calculated check-sum and the check-sum read from tape will cause
an error condition to be recognized by KIM. The check-sum is calculated by adding all data in the record

[t

except the “;” character.

The paper tape format described is compatible with all other MOS Technology, Inc. software support
programs.

Reference Manual SRecord 120

srec_motorola(5) File Formats Manual srec_motorola(5)

NAME

srec_motorola — Motorola S-Record hexadecimal file format

DESCRIPTION

This format is also known as the Exorciser, Exormacs or Exormax format.

Motorola’s S-record format allows binary files to be uploaded and downloaded between two computer
systems. This type of format is widely used when transferring programs and data between a computer
system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board for Motorola
microcontrollers and microprocessors.

The Lines

Most S-Record file contain only S-Record lines (see the next section), which always start with a capital S
character. Some systems generate various “extensions[rq] which usually manifest as lines which start with
something else. These “extension[rq] lines may or may not break other systems made by other vendors.
Caveat emptor.

The Fields

The S-Record format consists of 5 fields. These are the type field, length field, address field, data field, and
the checksum. The lines always start with a capital S character.

’ S ‘ Type ‘ Record Length | Address ‘ Data ‘ Checksum

Type The type field is a 1 character field that specifies whether the record is an SO, S1, S2, S3, S5, S6,
S7, S8 or S9 field.

Record Length
The record length field is a 2 character (1 byte) field that specifies the number of character pairs
(bytes) in the record, excluding the type and record length fields.

Address This is a 2-, 3- or 4-byte address that specifies where the data in the S-Record is to be loaded into
memory.

Data The data field contains the executable code, memory-loadable data or descriptive information to
be transferred.

Checksum
The checksum is an 8-bit field that represents the least significant byte of the one’s complement
of the sum of the values represented by the pairs of characters making up the record’s length,
address, and data fields.

Record Types

SO This type of record is the header record for each block of S-Records. The data field may contain
any descriptive information identifying the following block of S-Records. (It is commonly
“HDR[rq] on many systems.) The address field is normally zero.

S1 A record containing data and the 2-byte address at which the data is to reside.
S2 A record containing data and the 3-byte address at which the data is to reside.
S3 A record containing data and the 4-byte address at which the data is to reside.
S5

An optional record containing the number of S1, S2 and S3 records transmitted in a particular
block. The count appears in the two-byte address field. There is no data field.

This record is optional, you do not have to use it. Nobody knows if you can have more than one
in a file; and if you do, nobody knows whether or not the line count resets after each one.

The srec_cat command will only ever use one, provided the number of lines fits in 16 bits,
otherwise it will use S6.

S6
An optional record containing the number of S1, S2 and S3 records

Reference Manual SRecord 121

srec_motorola(5) File Formats Manual srec_motorola(5)

transmitted in a particular block. The count appears in the three-byte address
field. There is no data field.

This record is optional, you do not have to use it. Nobody knows if you can
have more than one in a file; and if you do, nobody knows whether or not the
line count resets after each one.

Nobody knows what happens if you mix S5 and S6 records in a file.

The srec_cat command will only ever use one, provided the number of lines

fits in 24 bits.

S7 A termination record for a block of S3 records. The address field may contain
the 4-byte address of the instruction to which control is passed. There is no
data field.

S8 A termination record for a block of S2 records. The address field may

optionally contain the 3-byte address of the instruction to which control is
passed. There is no data field.

S9 A termination record for a block of S1 records. The address field may
optionally contain the 2-byte address of the instruction to which control is
passed. If not specified, the first entry point specification encountered in the
object module input will be used. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE
Here is an example S-Record file. It contains the data “Hello, World[rq] to be loaded at address 0.
S00600004844521B
5110000048656C6C6F2C20576F726C640A9D
S5030001FB
S9030000FC

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 122

srec_msbin(5) File Formats Manual srec_msbin(5)

NAME

srec_msbin — Windows CE Binary Image Data Format

DESCRIPTION
This format is the output of the Microsoft WinCE Platform Builder. This is a binary (non-text) file format.
File names in this format typically (ambiguously) use the .bin suffix.

File Format
Files in this format start with a header record.

Then comes the data itself, organized into records.
The file finishes with an execution start address record. This is mandatory.

File Header Record
Data in this format start with an optional header containing the magic “BOO0FF\n”, followed by the image
start (four bytes, little endian) address and the span of the image (highest address — lowest address + 1)
(four bytes, little endian). The file header does not have a checksum; it is therefore possible that a corrupt
file header will go undetected.

Magic Least Greatest
“BO00OFF\n” Address Address
(7 bytes) (4 bytes) (4 bytes)
There is no provision for a file comment of any kind.
Data Record

Each record consists of a record start address (four bytes, little endian), a record length (four bytes, little
endian), a record checksum (four bytes, little endian), followed by the record data. The data part of each
record is raw byte values, no encoding.

Start Length Checksum Data
address (4 bytes) (4 bytes)
(4 bytes)

The checksum is calculated by a simple sum of unsigned bytes into a 32-bit accumulator.

The 12 record header bytes are not included in the record checksums; it is therefore possible that a corrupt
record header will go undetected.

It is not possible to place data at address zero with this format. Address zero is reserved for use by the
execution start address record.

There is effectively no limit on the length of a record (2°32-1). It is not uncommon for a MsBin file to
contain records with sizes in the tens of megabytes.

Execution Start Address Record
Last comes a special record with the record address set to zero and record length set to the image execution
start address. According to specification the record describing the execution start address must be always
present, and must always be the last record in the file.

Zero Start Checksum
(4 bytes) Address =0
(4 bytes) (4 bytes)

Commentary
The MsBin files produced by SRecord are valid and can be successfully parsed by the command line
utilities viewbin and cvrtbin (part of Windows CE platform).

For a MsBin file to be usable in Microsoft WinCE Platform Builder it has to contain a TOC meta-structure.
This is data embedded in the file by Microsoft WinCE Platform Builder itself.

The opposite conversion — from MsBin — comes in handy when analyzing a MsBin file (i.e. a WinCE
image).

Reference Manual SRecord 123

srec_msbin(5) File Formats Manual srec_msbin(5)

Size Multiplier
In general, binary data will expand in sized by approximately 1.0 times (approaching asymptotically from
above) when represented with this format, as the 15-byte file header is averaged over the data content.
Holes in the data will also increase the size.

SOURCE
http://msdn.microsoft.com/en—us/library/ms924510.aspx

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 124

srec_needham(5) File Formats Manual srec_needham(5)

NAME

srec_needham — Needham EMP-series programmer ASCII file format

DESCRIPTION
This format is understood by Needham Electronics’ EMP-series programmers. See
www . needhams.com/winman.pdf for more information. (This format is very similar to the ASCII-
Hex format, but without the "B and "C guard characters.)

Each data byte is represented as 2 hexadecimal characters, and is separated by white space from all other
data bytes.

The address for data bytes is set by using a sequence of $SAnnnn, characters, where nnnn is the
8-character ascii representation of the address. The comma is required. There is no need for an address
record unless there are gaps. Implicitly, the file starts a address O if no address is set before the first data

byte.
Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.
EXAMPLE
Here is an example ascii-hex file. It contains the data “Hello, World[rq] to be loaded at address 0x1000.
$A1000,
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 OA
COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 125

srec_os65v(5) File Formats Manual srec_o0s65v(5)

NAME
srec_os65v — OS65V Loader file format

DESCRIPTION
This format is used by Ohio Scientific OS65V-compatible loaders. This family of machines includes the
OSI C1P, Superboard II, C2, C4, C8, and Challenger III, as well as the UK101, and Elektor Junior.

The file startes with a period .’ (0x2E), to ensure address entry mode. then a 4-digit hex address, followed
by a slash °/’ (OX2F) to enter the data entry mode. The initial address is always present. There is no need
for an additional address record unless there are gaps.

Each data byte is represented as 2 hexadecimal characters, and is separated by a carriage return character
(0x0D) (advance address). The final return character may be omitted.

The data is concluded with a period ’.” (0Ox2E) to re-enter address mode. If an address to start execution is
specified, then the last 5 bytes are nnnnG where nnnn is the 4-digit execution address, and G is the *Go’
command.

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE

Here is an example ascii-hex file. It contains the data “Hello, World[rq] to be loaded at address 0x1000,
with execution at 0x1003. (On a 6502, this is the opcode for indirect jump to 0x2C6F.)

1000/48"M65"M6C"M6C"MOF"M2C"M20"M57" M6F" M72"M6C"M64"MOA™M.1010G
COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the "srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 126

srec_ppb(5) File Formats Manual srec_ppb(5)

NAME

srec_ppb — Stag Prom Programmer binary format

DESCRIPTION

This is the native binary format of the Stag Prom Programmer.

Format
The format is packet based. The packet is somposed of an 0x01 byte, the packet payload size (4 bytes, big-
endian), the packet address size (4 bytes, big-endian), the packet data, and a one-byte simple sum of the

payload data.

If the packet payload is more than 1024 bytes, there is an intermediate checksum after each 1024th payload
pyte.

The end of file is indicated by a packet with a zero-length payload.

Command Line Option
This format is specified using the -PPB command line option.

Size Multiplier
In general, binary data will expand in sized by approximately 1.002 times when represented with this

format (worse if there are many short data regions).

SEE ALSO
http://www.stag.co.uk/

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,

2013, 2014 Peter Miller
The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the "srec_cat

—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 127

srec_ppx(5) File Formats Manual srec_ppx(5)

NAME

srec_ppx — Stag Prom Programmer hexadecimal format

DESCRIPTION

This is the native hexadecimal format of the Stag Prom Programmer.

Format
The file must start with an asterisk **’ on a line by itself.

Each line has a 16-bit address, followed by 8-bit bytes.
The end is indicated by *$S’ folloowed by a 16-bit checksum of the data bytes as 4 hex digits.

Command Line Option
This format is specified using the -PPX command line option.

Size Multiplier
In general, binary data will expand in sized by approximately 3 times when represented with this format
(worse if you use shorter lines).

EXAMPLE
Here is an example PPX file. It contains the data “Hello, World” to be loaded at bytes address 0x0000 (but

remember, the file contents are always multiples of four bytes).
*

0000 48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 OA $50473

SEE ALSO
http://matthieu.benoit.free.fr/pdf/pp39.pdf http://www.stag.co.uk/

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 128

srec_signetics(5) File Formats Manual srec_signetics(5)

NAME

srec_signetics — Signetics file format

DESCRIPTION

The Signetics file format is not often used. The major disadvantage in modern applications is that the
addressing range is limited to only 64kb.

Records
All data lines are called records, and each record contains the following 5 fields:

’:‘aaaa‘cc‘as‘dd‘ss‘

The field are defined as follows:
Every record starts with this identifier.

aaaa The address field. A four digit (2 byte) number representing the first address to be used by this

record.
cc The byte-count. A two digit value (1 byte), counting the actual data bytes in the record.
as Address checksum. Covers 2 address bytes and the byte count.
dd The actual data of this record. There can be 1 to 255 data bytes per record (see cc)
Ss Data Checksum. Covers only all the data bytes of this record.

Record Begin
Every record begins with a colon “:[rq] character. Records contain only ASCII characters. No spaces or
tabs are allowed in a record. In fact, apart from the 1st colon, no other characters than 0..9 and A..F are
allowed in a record. Interpretation of a record should be case less, it does not matter if you use a..f or A..F.

Unfortunately the colon was chosen for the Signetics file format, similar to the Intel format (see
srec_intel(5) for more information). However, SRecord is able to automatically detect the dofference
between the two format, when you use the —Guess format specifier.

Address Field
This is the address where the first data byte of the record should be stored. After storing that data byte, the
address is incremented by 1 to point to the address for the next data byte of the record. And so on, until all
data bytes are stored. The address is represented by a 4 digit hex number (2 bytes), with the MSD first.
The order of addresses in the records of a file is not important. The file may also contain address gaps, to
skip a portion of unused memory.

Byte Count
The byte count cc counts the actual data bytes in the current record. Usually records have 32 data bytes,
but any number between 1 and 255 is possible.

A value of 0x00 for cc indicates the end of the file. In this case not even the address checksum will follow!
The record (and file) are terminated immediately.

It is not recommended to send too many data bytes in a record for that may increase the transmission time
in case of errors. Also avoid sending only a few data bytes per record, because the address overhead will be
too heavy in comparison to the payload.

Address Checksum
This is not really a checksum anymore, it looks more like a CRC. The checksum can not only detect errors
in the values of the bytes, but also bytes out of order can be detected.

The checksum is calculated by this algorithm:
checksum =0
fori=1to3
checksum = checkum XOR byte
ROL checksum
next i
For the Address Checksum we only need 2 Address bytes and 1 Byte Count byte to be added. That’s why

Reference Manual SRecord 129

srec_signetics(5) File Formats Manual srec_signetics(5)

we count to 3 in the loop. Every byte is XORed with the previous result. Then the intermediate result is
rolled left (carry rolls back into b0).

This results in a very reliable checksum, and that for only 3 bytes!
The last record of the file does not contain any checksums! So the file ends right after the Byte Count of 0.

Data Field
The payload of the record is formed by the Data field. The number of data bytes expected is given by the
Byte Count field. The last record of the file may not contain a Data field.

Data Checksum
This checksum uses the same algorithm as used for the Address Checksum. This time we calculate the
checksum with only the data bytes of this record.
checksum =0
fori=1tocc
checksum = checksum XOR byte
ROL checksum
next i
Note that we count to the Byte Count cc this time.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

EXAMPLE

Here is an example Signetics file
:BOO010A5576F77212044696420796F75207265617B
:B01010E56C6C7920676F207468726F756768206136
:B02010256C6C20746861742074726F75626C652068
:BO300D5F746F207265616420746869733FD1
:B0O3D0O

In the example above you can see a piece of code in Signetics format. The first 3 lines have 16 bytes of

data each, which can be seen by the byte count. The 4th line has only 13 bytes, because the program is at

it’s end there.

Notice that the last record of the file contains no data bytes, and not even an Address Checksum.

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/signetics.htm

AUTHOR
This man page was taken from the above Web page. It was written by San Bergmans
<sanmail @bigfoot.com>

Reference Manual SRecord 130

srec_spasm(5) File Formats Manual srec_spasm(5)

NAME

srec_spasm — SPASM file format

DESCRIPTION

This format is the output of the Paralax SPASM assembler (now defunct, I'm told). The file contains two
columns of 16-bit hexadecimal coded values. The first column is the word address, the second column is
the word data.

By default, SRecord treats this is big-endian data (the most significant byte first). If you want little endian
order, use the —spasm-le argument instead.

Size Multiplier

In general, binary data will expand in sized by approximately 5.0 times when represented with this format
(5.5 times in Windows).

EXAMPLE

Here is an example SPASM file. It contains the data “Hello, World[rq] to be loaded at bytes address
0x0100 (but remember, the file contents are word addressed).

0080 6548

0081 6C6C

0082 2C6F

0083 5720

0084 726F

0085 646C

COPYRIGHT

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER

Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 131

srec_spectrum(5)

NAME

File Formats Manual

srec_spectrum — Spectrum file format

DESCRIPTION

srec_spectrum(5)

In this format, bytes are recorded as ASCII code with binary digits represented by 1s and Os. Each byte is
preceded by a decimal address.

The file ends with a Control-C character (0x03).

Size Multiplier

In general, binary data will expand in sized by approximately 14 times when represented with this format
(or 15 times on DOS or Windows).

EXAMPLE

Here is an example Spectrum file. It contains the data “Hello, World[rq] to be loaded at address 0x0.

B
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
“C

COPYRIGHT

01001000
01100101
01101100
01101100
01101111
00101100
00100000
01010111
01101111
01110010
01101100
01100100
00100001
00001010

srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the "srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain

conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran
Peter Miller

Reference Manual

E-Mail:
E-Mail:

scottfinneran @yahoo.com.au
pmiller@opensource.org.au

SRecord

132

srec_stewie(5) File Formats Manual srec_stewie(5)

NAME

srec_stewie — Stewie’s binary file format

DESCRIPTION

If you have a URL for documentation of this format, please let me know.

Any resemblance to the Motorola S-Record is superficial, and extends only to the data records. The header
records and termination records are completely different. None of the other Motorola S-Records record
type are available.

The Records
All records start with an ASCII capital S character, value 0x53, followed by a type specifier byte. All
records consist of binary bytes.

The Header Record
Each file starts with a fixed four byte header record.

| 0x53 | 0x30 | 0x30 [0x33]

The Data Records
Each data record consists of 5 fields. These are the type field, length field, address field, data field, and the
checksum. The lines always start with a capital S character.

’ 0x53 ‘ Type ‘ Record Length ‘ Address ‘ Data ‘ Checksum‘

Type The type field is a one byte field that specifies whether the record has a two-byte address field
(0x31), a three-byte address field (0x32) or a four-byte address field (0x33). The address is big-

endian.

Record Length
The record length field is a one byte field that specifies the number of bytes in the record
following this byte.

Address This is a 2-, 3- or 4-byte address that specifies where the data in the record is to be loaded into
memory.

Data The data field contains the executable code, memory-loadable data or descriptive information to
be transferred.

Checksum

The checksum is a one byte field that represents the least significant byte of the one’s
complement of the sum of the values represented by the bytes making up the record’s length,
address, and data fields.

The Termination Record
Each file ends with a fixed two byte termination record.

Size Multiplier

In general, binary data will expand in sized by approximately 1.2 times when represented with this format.

Reference Manual SRecord 133

srec_stewie(5) File Formats Manual srec_stewie(5)

EXAMPLE
Here is an hex-dump example file. It contains the data “Hello, World[rq] to be loaded at address O.
0000: 53 30 30 33 53 31 10 00 00 48 65 6C 6C 6F 2C 20 S003Sl...Hello,
0010: 57 6F 72 6C 64 0A 9D 53 38 World..S8

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the "srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 134

srec_tektronix(5) File Formats Manual srec_tektronix(5)

NAME

srec_tektronix — Tektronix hexadecimal file format

DESCRIPTION
The Tektronix hexadecimal file format is no longer very common. It serves a similar purpose to the
Motorola and Intel formats, usually used to transfer data into EPROM programmers.

The Lines
Most Tektronix hex files contain only Tektronix hex lines (see the next section), which always start with a
slash (*“/[rq]) character. There are only two types of lines — data lines and a termination line.

Data Lines
Data lines have five fields: address, length, checksum 1, data and checksum 2. The lines always start with a
slash (“/[rq]) character.

’/ ‘ Address ‘ Length ‘ Checksum| ‘ Data ‘ Checksum?2

Address This is a 4 character (2 byte) address that specifies where the data in the record is to be loaded
into memory.

Data Length
The data length field is a 2 character (1 byte) field that specifies the number of character pairs
(bytes) in the data field. This field never has a value of zero.

Checksum 1
The checksum 1 field is a 2 character (1 byte) field. Its value is the 8-bit sum of the six 4-bit
values which make up the address and length fields.

Data The data field contains character pairs (bytes); the number of character pairs (bytes) is indicated
by the length field.
Checksum 2

The checksum 2 field is a 2 character (1 byte) field. Its value is the least significant byte of the
sum of the all the 4-bit values of the data field.

Termination Line
Termination lines have three fields: address, zero and checksum. The lines always start with a slash (“/[rq])
character.

’ / ‘ Address ‘ Zero ‘ Checksum

Address This is a 4 character (2 byte) address that specifies where to begin execution.

Zero The data length field is a 2 character (1 byte) field of value zero.

Checksum
The checksum 1 field is a 2 character (1 byte) field. Its value is the 8-bit sum of the six 4-bit
values which make up the address and zero fields.

Size Multiplier
In general, binary data will expand in sized by approximately 2.4 times when represented with this format.

Reference Manual SRecord 135

srec_tektronix(5) File Formats Manual srec_tektronix(5)

EXAMPLE
Here is an example Tektronix hex file. It contains the data “Hello, World[rq] to be loaded at address 0.
/00000D0D48656C6C6F2C20576F726C640A52
/00000000

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 136

srec_tektronix_extended(5) File Formats Manual srec_tektronix_extended(5)

NAME

srec_tektronix_extended — Tektronix Extended hexadecimal file format

DESCRIPTION
This format allows binary files to be uploaded and downloaded between two computer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board
for microcontrollers and microprocessors.

The Lines
Lines always start with a percent (%) character. Each line consists of 5 fields. These are the length field,
the type field, the checksum, the address field (including address length), and the data field.

The Fields

%

Length ‘ Type ‘ Checksum ‘ Address ‘ Data‘

Record Length
The record length field is a 2 character (1 byte) field that specifies the number of characters (not
bytes) in the record, excluding the percent.

Type The type field is a 1 character field that specifies whether the record is data (6) or termination (8).

Checksum
The checksum is an 2 character (1 byte) field that represents the sum of all the nibbles on the line,
excluding the checksum.

Address This is a 9 character field. The first character is the address size; it is always 8. The remaining 8
chgaracters are the 4-byte address that specifies where the data is to be loaded into memory.

Data The data field contains the executable code, memory-loadable data or descriptive information to
be transferred.

Record Types

6 A record containing data. The data is placed at the address specified.
8 A termination record. The address field may optionally contain the address of the instruction to
which control is passed. There is no data field.
Size Multiplier
In general, binary data will expand in sized by approximately 2.5 times when represented with this format.
EXAMPLE
Here is an example Tektronix extended file. It contains the data “Hello, World” to be loaded at address
0x006B.

%256D980000006B48656C6C6F2C20576F726C64210A
%09819800000000

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran@yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 137

srec_ti_tagged_16(5) File Formats Manual srec_ti_tagged_16(5)

NAME
srec_ti_tagged_16 — Texas Instruments Tagged (SDSMAC 320) file format

DESCRIPTION
This format is also known as the TI-Tagged or Texas Instruments SDSMAC (320) format.

This format allows binary files to be uploaded and downloaded between two computer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board
for 16-bit microcontrollers and microprocessors.

The Lines
Unlike many other object formats, the lines themselves are not especially significant. The format consits of
a number of tagged fields, and lines are composed of a series of these fields.

Tag Description

* Data byte.

End of file.

File header (optional).
Checksum.

Dummy checksum (ignored).
Word Address.

Data word.

End of data record.

Program identifier (optional).

(B]n[n]

One byte of data. The nn is 8-bit big-endian hexadecimal.

End of File
[[cRiF]

The end of data is indicated by this tag. The end of line sequence (LF on Unix systems, CRLF on PCs)
follows this tag.

File Header

)T WO oo

Data Byte

’ 0 ‘ length ‘ ﬁlename‘

The optional start-of-file record begins with a tag character ("0’) and a 12-character file header. The first
four characters are the count (in hex) of the 16-bit data word values (B) which follow, not including data
byte values (*). The remaining file header characters are the name of the file and may be any ASCII
characters, blank padded.

Checksum

7 nfn]n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (7). The nnnn is 16-bit big-endian hexadecimal.

Reference Manual SRecord 138

srec_ti_tagged_16(5) File Formats Manual srec_ti_tagged_16(5)

Dummy Checksum

(8 [n]n]n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (8). The nnnn is 16-bit big-endian hexadecimal.

Address

(o [n]n]n]n]

Addresses may be given for any data byte, but none is mandatory. The file begins at 0000 if no address is
given before the first data field. The nnnn is 16-bit big-endian hexadecimal.

Data Word

(Blalafb]b]

Two bytes of data. The aa and bb are each 8-bit big-endian hexadecimal.

End of Record

The end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag. The checksum is
reset to zero at this point.

Program Identifier

’K‘n‘n‘n‘n‘text‘

The program identifier can contain a brief description of the program, or can be empty (i.e. the text portion
is optional). The nnnn length (hex) of the field includes the ‘K’, the length and the text; it is at least 5.

Size Multiplier
In general, binary data will expand in sized by approximately 2.9 times when represented with this format.

EXAMPLE
Here is an example TI-Tagged file. It contains the data “Hello, World[rq] to be loaded at address 0x0100.
K000590080B4865B6C6CB6F2CB2057B6F72B6C64*0ATF641F

Here is another example from the reference below
00028 TFDCFF
90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFFF7F400F
90008BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFF 7F 3F8F
90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFFF 7F3FFF
90018BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFF7TF3F7F
90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFFF 7F 3FEF

SEE ALSO
http://www.dataio.com/pdf/Manuals/Unifamily/981-0014-016.pdf (page 6-7)

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

Reference Manual SRecord 139

srec_ti_tagged_16(5) File Formats Manual srec_ti_tagged_16(5)

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 140

srec_ti_tagged(5) File Formats Manual srec_ti_tagged(5)

NAME
srec_ti_tagged — Texas Instruments Tagged (SDSMAC) file format

DESCRIPTION
This format is also known as the 71-Tagged or TI-SDSMAC format.

This format allows binary files to be uploaded and downloaded between two computer systems, typically
between a computer system (such as a PC, Macintosh, or workstation) and an emulator or evaluation board
for microcontrollers and microprocessors.

The Lines
Unlike many other object formats, the lines themselves are not especially significant. The format consits of
a number of fagged fields, and lines are composed of a series of these fields.

Tag Description

* Data byte.

End of file.

File header (optional).
Checksum.

Dummy checksum (ignored).
Address.

Data word.

End of data record.

Program identifier (optional).

(B]n[n]

One byte of data. The nn is 8-bit big-endian hexadecimal.

End of File
[[cRiF]

The end of data is indicated by this tag. The end of line sequence (LF on Unix systems, CRLF on PCs)
follows this tag.

File Header

)T WO oo

Data Byte

’ 0 ‘ length ‘ ﬁlename‘

The optional start-of-file record begins with a tag character ("0’) and a 12-character file header. The first
four characters are the byte count of the file data. The remaining 8 characters are the name of the file and
may be any ASCII characters, blank padded.

Checksum

7 nfn]n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (7). The nnnn is 16-bit big-endian hexadecimal.

Reference Manual SRecord 141

srec_ti_tagged(5) File Formats Manual srec_ti_tagged(5)

Dummy Checksum

(8 [n]n]n]n]

The checksum is the 2s complement sum of the 8-bit ASCII values of characters, beginning with the first
tag character and ending with the checksum tag character (8). The nnnn is 16-bit big-endian hexadecimal.

Address

(o [n]n]n]n]

Addresses may be given for any data byte, but none is mandatory. The file begins at 0000 if no address is
given before the first data field. The nnnn is 16-bit big-endian hexadecimal.

Data Word

(Blalafb]b]

Two bytes of data. The aa and bb are each 8-bit big-endian hexadecimal.

End of Record

The end of line sequence (LF on Unix systems, CRLF on PCs) is escaped using this tag. The checksum is
reset to zero at this point.

Program Identifier

’K‘n‘n‘n‘n‘text‘

The program identifier can contain a brief description of the program, or can be empty (i.e. the text portion
is optional). The nnnn length (hex) of the field includes the ‘K’, the length and the text; it is at least 5.

Size Multiplier
In general, binary data will expand in sized by approximately 2.9 times when represented with this format.

EXAMPLE
Here is an example TI-Tagged file. It contains the data “Hello, World[rq] to be loaded at address 0x0100.
K000590080B4865B6C6CB6F2CB2057B6F72B6C64*0ATF648F

and here is another example from the reference below
00050 TFDD4F
90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFFF7F400F
90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFFF 7F3FFF
90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFFF 7F 3FEF
90030BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFF 7F 3FDF
90040BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBEFFF 7F 3FCFEF

SEE ALSO
http://www.dataio.com/pdf/Manuals/Unifamily/981-0014-016.pdf (page 6-33)

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cat —VERSion License’ command.

Reference Manual SRecord 142

srec_ti_tagged(5) File Formats Manual srec_ti_tagged(5)

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 143

srec_ti_txt(5) File Formats Manual srec_ti_txt(5)

NAME
srec_ti_txt — Texas Instruments ti-txt (MSP430) file format

DESCRIPTION
The ti-TXT format is used by the Texas Instruments MSP430 familty programming adapter.

The TI-TXT hex format supports 16-bit hexadecimal data. It consists of one or more sections, followed by
the end-of-file indicator.

Each section consistes of an at (@) sign followed a execution start address (in hexadecimal), and newline,
and then data bytes (in hexadecimal). The section address is followed by a newline. There are to be 16
data bytes per line, except for the last line in a section.

The end-of-file indicator is the letter g followed by a newline. The end-of-file indicator mandatory.

Size Multiplier
In general, binary data will expand in sized by approximately 3.0 times when represented with this format.

EXAMPLE

Here is an example ti-txt file taken from the reference below:
@F000
31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F
QFFFE
00 FO
q

SEE ALSO
http://www.ti.com/lit/pdf/slaul01, section A.2. Note: the portion which says addresses must be even, and
the number of data bytes in a section must be even, is wrong.

COPYRIGHT
srec_ti_txt version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_ti_txt program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_ti_txt
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_ti_txt —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 144

srec_trs80(5)

NAME

File Formats Manual srec_trs80(5)

srec_trs80 — Radio Shack TRS-80 object file format specification

DESCRIPTION
This document describes the binary object file format for the Z80-based Radio Shack TRS-80
microcomputers, such as the Model I, 11, III, 4, 4D, and 4P. The binary format is generated by the disk-
based Assembler/Editor, and used for TRS-DOS program files.

The object file is blocked into records, each of which contains the record type, length, and payload data.
For Data and End of File records, the payload starts with two bytes of address in little-endian format.
There are four main types of records that are defined. The record types are:

e Data Record

¢ End of File Record with Execution Transfer

¢ End of File Record without Execution Transfer

¢ Comment

* Start Linear Address Record (32-bit format only)

General Record Format

Record Record Load Data
Type Length Address
Record Type.

Each record begins with a single byte Record Type field which specifies the record type of this
record. The Record Type field is used to interpret the remaining information within the record.
This field is one byte, represented as two hexadecimal characters. The encoding for all the
current record types are:

1 Data Record
2 End of File Record with Execution Transfer
3 End of File Record without Execution Transfer

5 Comment Record

Record Length

Address

Data

Reference Manual

Each record has a single byte Record Length field which specifies the number of bytes of
information or data which follows the Record Length field of the record. The maximum value of
the Record Length field is hexadecimal “FF” or 255. In the case of Data Records only, Record
Length byte values of zero to two are considered to be lengths of 256 to 258, respectively.

Data and End records have a two-byte Address field in little-endian byte order. For Data records,
this is the starting address at which to load the remaining payload of the record. In End records,
this is the address for the start of execution of the file, or zero if not applicable.

Each record has a variable length Data field, it consists of zero or more bytes. The interpretation
of this field depends on the Record Type field.

SRecord 145

srec_trs80(5) File Formats Manual srec_trs80(5)

REFERENCE
This information comes from the "Program Files" section of TRSDOS-II Reference Manual, Tandy
Corporation, 1982.

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 146

srec_vmem(5) File Formats Manual srec_vmem(5)

NAME

srec_vmem — vmem file format

DESCRIPTION

This format is the Verilog VMEM format. This is a hex format suitable for loading into Verilog simulations
using the $readmemh call.

The text file to be read shall contain only the following:
White space (spaces, new lines, tabs, and form-feeds)
Comments (both types of C++ comment are allowed)
Hexadecimal numbers

White space and/or comments shall be used to separate the numbers.
In the following discussion, the term "address" refers to an index into the array that models the memory.

As the file is read, each number encountered is assigned to a successive word element of the memory.
Addressing is controlled both by specifying start and/or finish addresses in the system task invocation and
by specifying addresses in the data file.

When addresses appear in the data file, the format is an "at" character (@) followed by a hexadecimal
number as follows:
@hh...h

Both uppercase and lowercase digits are allowed in the number. No white space is allowed between the @
and the number. As many address specifications as needed within the data file can be used. When the
system task encounters an address specification, it loads subsequent data starting at that memory address.

Commentary

There is no checksum in this format, which can generate false positives when guessing file formats on
input.

There is no indication of the word size in the file, since it is dependent on the word type of the Verilog
memory it is being read into. SRecord will guess the word size based on the number of digits it sees in the
numbers, but this is only a guess.

SRecord will also assume that the numbers are to be loaded big-endian; that is, most significant byte (first
byte seen) into the lowest address covered by the word.

You can use the —byte-swap filter to change the byte order; it takes an optional width of bytes to swap
within.

Size Multiplier

In general, binary data will expand in sized by approximately 2.9 times (32-bit), 3.1 times (16-bit) or 3.6
times (8-bit) when represented with this format.

EXAMPLE

Here is an example Verilog VMEM file. It contains the data “Hello, World[rq] to be loaded at address
0x1000.
@00000400 48656C6C 6F2C2057 6F726C64 OAFFFFFF

REFERENCE

IEEE P1364-2005/D2, Standard for Verilog Hardware Description Language (Draft), section 17.2.8
"Loading memory data from a file", p. 295.

Copyright © 2003 IEEE

http://www.boyd.com/1364/

http://www.boyd.com/1364/1364-2005-d2.pdf.gz

Reference Manual SRecord 147

srec_vmem(5) File Formats Manual srec_vmem(5)

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 148

srec_wilson(5)

NAME

srec_wilson — wilson file format

DESCRIPTION

This is a mystery format, added to support a mysery EPROM loader used by Alan Wilson

<dvdsales@dvdlibrary.co.uk>

File Formats Manual

srec_wilson(5)

If you know the true name of this format, please let me know! It bears a remarkable similarity to the
Motorola S-Record format, however I can find no reference to a "compressed" Motorola format.

The Lines

Each line contains normal ASCII characters, and “high bit on[rq] characters, but the ASCII control
characters are avoided (the high-bit-on con characters are not avoided). Normal line termination characters
(CRLF or LF, depending on your system) are used.

The presence of high-bit-on characters makes this format unattractive to send via email, as it must be
wrapped as a binary attachment, increasing its size.

In general, a single byte per byte is used to encode values, however some values use two bytes, according to

the following table:

Byte Value
0x00 .. Ox9F
0xAO .. OXAF
0xBO .. 0xBF
0xCO0 .. 0xCF
0xDO .. 0xDF
oxEQ .. OxFF

Encoding (1 or 2 chars)

0x40 ..
0x3A 0x30 ..
0x3B 0x30 ..
0x3C 0x30 ..
0x3D 0x30 ..
0xEOQ ..

0xDF
0x3A 0x3F
0x3B 0x3F
0x3C 0x3F
0x3D 0x3F
OxFF

The rest of this description, when refering to “bytes[rq] means byte values encoded using the above table.

The Fields

Each line consists of 5 fields. These are the type field, length field, address field, data field, and the

checksum.

’Type ‘ Record Length

Address ‘ Data ‘ Checksum‘

Type The type field is a 1 character field that specifies whether the record is data (0x43), or termination

(0x47).
Record Length

The record length field is a 1 byte field that specifies the number of bytes in the record, excluding
the type and record length fields.

Address This is a 4-byte address that specifies where the data is to be loaded into memory.

Data The data field contains the executable code, memory-loadable data or descriptive information to

be transferred.
Checksum

The checksum is an 1-byte field that represents the least significant byte of the one’s complement
of the sum of the values represented by the bytes making up the length, address, and data fields.

Reference Manual

SRecord

149

srec_wilson(5) File Formats Manual srec_wilson(5)

Record Types
0x43 (#) A record containing data and the 4-byte address at which the data is to reside.

0x47 () A termination record. The address field may contain the 4-byte address of the instruction to
which control is passed. There is no data field.

Size Multiplier
In general, binary data will expand in sized by approximately 1.5 times when represented with this format.

COPYRIGHT
srec_cat version 1.64
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014 Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 1000

Table of Contents(SRecord)

srec_cat(1)
srec_cmp(1)
srec_examples(1)
srec_info(1)
srec_input(1)
srec_license(1)
srecord_license(3)
srec_aomf(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_binary(5)
srec_brecord(5)
srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)
srec_fairchild(5)
srec_fastload(5)
srec_formatted_binary(5)
srec_forth(5)
srec_fpc(5)
srec_idt(5)
srec_intel16(5)
srec_intel(5)
srec_logisim(5)
srec_mem(5)
srec_mif(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)
srec_msbin(5)
srec_needham(5)
srec_os65v(5)
srec_ppb(5)
srec_ppx(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_stewie(5)
srec_tektronix(5)
srec_tektronix_extended(5)
srec_ti_tagged_16(5)
srec_ti_tagged(5)
srec_ti_txt(5)
srec_trs80(5)
srec_vmem(5)
srec_wilson(5)

Reference Manual

Table of Contents(SRecord)

The README file

Release Notes .

How to build SRecord .

How to add a new file format .

How to add a new filter .

Manipulate EPROM load files .
Compare two EPROM load files for equahty
Examples of how to use SRecord

Information about EPROM load files

Input file specifications

GNU General Public License . .

GNU Lesser General Public License

Intel Absolute Object Module Format

Ascii-Hex file format

Atmel Generic file format .

Binary file format

Freescale MC68EZ328 Dragonball bootstrap record format
Xilinx Coefficient File Format

RCA Cosmac Elf file format .

DEC Binary (XXDP) file format .

Elektor Monitor (EMONS52) file format

Fairchild Fairbug file format .

LSI Logic Fast Load file format .

Formatted Binary file format .

FORTH file format . .

Four Packed Code (FPC) file format

IDT/sim binary file format

Intel Hexadecimal 16-bit file format spec1ﬁcat10n
Intel Hexadecimal object file format specification
format Logisim EPROM load files

Lattice Memory Initialization format

Memory Initialization File (MIF) format
MIPS-Flash file format .

MOS Technology file format .

Motorola S-Record hexadecimal file format
Windows CE Binary Image Data Format
Needham EMP-series programmer ASCII file format
0S65V Loader file format . .

Stag Prom Programmer binary format .

Stag Prom Programmer hexadecimal format .
Signetics file format .

SPASM file format .

Spectrum file format

Stewie’s binary file format .

Tektronix hexadecimal file format .
Tektronix Extended hexadecimal file format . .o
Texas Instruments Tagged (SDSMAC 320) file format .
Texas Instruments Tagged (SDSMAC) file format
Texas Instruments ti-txt (MSP430) file format
Radio Shack TRS-80 object file format specification
VMEM file format

Wilson file format

SRecord

20
24
27
35
38
51
54
68
78
81
83
84
85
87
88
89
90
91
93
94
95
96
97
100
101
105
111
112
114
117
119
121
123
125
126
127
128
129
131
132
133
135
137
138
141
144
145
147
149

il

Table of Contents(SRecord)

srec_info(1)
srec_aomf(5)
srec_aomf(5)
srec_needham(5)

srec_ascii_hex(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_atmel_generic(5)
srec_binary(5)
srec_dec_binary(5)
srec_binary(5)
srec_formatted_binary(5)
srec_idt(5)
srec_stewie(5)
srec_ppb(5)
srec_formatted_binary(5)
srec_msbin(5)
srec_dec_binary(5)
srec_intel16(5)
srec_brecord(5)

srec_brecord(5)

srec_cat(1)
srec_msbin(5)
srec_cmp(1)

srec_fpc(5)
srec_coe(5)
srec_coe(5)
srec_cmp(1)
srec_cosmac(5)
srec_cosmac(5)
srec_msbin(5)
srec_dec_binary(5)

srec_dec_binary(5)
srec_brecord(5)
srec_emon52(5)
srec_cosmac(5)
srec_emon52(5)

srec_emon52(5)
srec_needham(5)
srec_cat(1)
srec_info(1)
srec_logisim(5)
srecord(3)
srec_cmp(1)
srec_cmp(1)

srec_examples(1)

Reference Manual

51
81
81
125

83
83
84
84
85
90
85
95
100
133
127
95
123
90
101
87

87

27
123
35

97
88
88
35
89
89
123
90

90
87
91
89
91

91
125
27
51
111

35
35

38

srec info - information

srec aomf - Intel

srec

srec needham - Needham EMP-series
programmer

srec

srec ascii hex -

srec

srec atmel generic -

srec

srec dec

srec binary -

srec formatted binary - Formatted
srec idt - IDT/sim

srec stewie - Stewie’s

srec ppb - Stag Prom Programmer
srec formatted

srec msbin - Windows CE

srec dec binary - DEC

srec intel16 - Intel Hexadecimal 16-
srec brecord - Freescale MC68EZ328
Dragonball

srec

srec
srec msbin - Windows
srec

srec fpc - four packed
srec coe - Xilinx

srec

srec cmp -

srec cosmac - RCA
srec

srec msbin - Windows CE Binary Image

Srec

srec dec binary -

srec brecord - Freescale MC68EZ328
srec emon52 -

srec cosmac - RCA Cosmac

srec

srec emon52 - Elektor Monitor (
srec needham - Needham

srec cat - manipulate

srec info - information about
srec logisim - format Logisim
srecord - library to manipulate
srec cmp - compare two

srec cmp - compare two EPROM load files

for
srec

SRecord

Table of Contents(SRecord)

about EPROM load files

Absolute Object Module Format

aomf - Intel Absolute Object Module Format
ASCII file format

ascii hex - Ascii-Hex file format
Ascii-Hex file format

atmel generic - Atmel Generic file format
Atmel Generic file format

binary - binary file format

binary - DEC Binary (XXDP) file format
binary file format

Binary file format

binary file format

binary file format

binary format

binary - Formatted Binary file format
Binary Image Data Format

Binary (XXDP) file format

bit file format specification

bootstrap record format

brecord - Freescale MC68EZ328 Dragonball
bootstrap record format

cat - manipulate EPROM load files

CE Binary Image Data Format

cmp - compare two EPROM load files for
equality

code file format

Coefficient File Format

coe - Xilinx Coefficient File Format
compare two EPROM load files for equality
Cosmac EIf file format

cosmac - RCA Cosmac Elf file format
Data Format

dec binary - DEC Binary (XXDP) file
format

DEC Binary (XXDP) file format
Dragonball bootstrap record format
Elektor Monitor (EMONS52) file format
EIf file format

emon5?2 - Elektor Monitor (EMONS52) file
format

EMONS52) file format

EMP-series programmer ASCII file format
EPROM load files

EPROM load files

EPROM load files

EPROM load files

EPROM load files for equality

equality

examples - examples of how to use SRecord

v

Table of Contents(SRecord)

srec_examples(1)
srec_tektronix_extended(5)
srec_tektronix_extended(5)

srec_brecord(5)
srec_fairchild(5)
srec_fairchild(5)
srec_fairchild(5)
srec_fastload(5)
srec_fastload(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_binary(5)
srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)
srec_fairchild(5)
srec_fastload(5)
srec_formatted_binary(5)
srec_forth(5)
srec_fpc(5)
srec_idt(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)

srec_needham(5)

srec_os65v(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_stewie(5)
srec_tektronix_extended(5)

srec_tektronix(5)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_ti_txt(5)

srec_vmem(5)
srec_wilson(5)
srec_intel16(5)
srec_intel(5)
srec_trs80(5)
srec_mif(5)
srec_cat(1)
srec_info(1)
srec_logisim(5)
srecord(3)

Reference Manual

38
137
137

87
93
93
93
94
94
83
84
85
88
89
90
91
93
94
95
96
97
100
117
119
121

125

126
129
131
132
133
137

135
138

141

144

147
149
101
105
145
114

27

51
111

srec examples -
srec tektronix extended - Tektronix
srec tektronix

srec brecord - Freescale MC68

srec fairchild - Fairchild

srec fairchild -

srec

srec fastload - LSI Logic

srec

srec ascii hex - Ascii-Hex

srec atmel generic - Atmel Generic

srec binary - binary

srec coe - Xilinx Coefficient

srec cosmac - RCA Cosmac EIf

srec dec binary - DEC Binary (XXDP)
srec emon52 - Elektor Monitor (EMONS52)
srec fairchild - Fairchild Fairbug

srec fastload - LSI Logic Fast Load

srec formatted binary - Formatted Binary
srec forth - FORTH

srec fpc - four packed code

srec idt - IDT/sim binary

srec mips flash - MIPS-Flash

srec mos tech - MOS Technology

srec motorola - Motorola S-Record
hexadecimal

srec needham - Needham EMP-series
programmer ASCII

srec 0s65v - OS65V Loader

srec signetics - Signetics

srec spasm - SPASM

srec spectrum - Spectrum

srec stewie - Stewie’s binary

srec tektronix extended - Tektronix
Extended hexadecimal

srec tektronix - Tektronix hexadecimal
srec ti tagged 16 - Texas Instruments Tagged
(SDSMAC 320)

srec ti tagged - Texas Instruments Tagged
(SDSMAC)

srec ti txt - Texas Instruments ti-txt
(MSP430)

srec vmem - vimem

srec wilson - wilson

srec intel16 - Intel Hexadecimal 16-bit
srec intel - Intel Hexadecimal object

srec trs80 - Radio Shack TRS-80 object
srec mif - Memory Initialization

srec cat - manipulate EPROM load

srec info - information about EPROM load
srec logisim - format Logisim EPROM load
srecord - library to manipulate EPROM load

SRecord

Table of Contents(SRecord)

examples of how to use SRecord
Extended hexadecimal file format
extended - Tektronix Extended hexadecimal
file format

EZ328 Dragonball bootstrap record format
Fairbug file format

Fairchild Fairbug file format

fairchild - Fairchild Fairbug file format
Fast Load file format

fastload - LSI Logic Fast Load file format
file format

file format

file format

File Format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format
file format
file format
file format
file format
file format

file format
file format

file format
file format

file format

file format

file format specification
file format specification
file format specification
File (MIF) format

files

files

files

files

Table of Contents(SRecord)

srec_cmp(1)
srec_input(1)
srec_mips_flash(5)
srec_mips_flash(5)
srec_cmp(1)
srec_aomf(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_binary(5)
srec_brecord(5)

srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)

srec_fairchild(5)
srec_fastload(5)
srec_formatted_binary(5)

srec_forth(5)
srec_fpc(5)
srec_idt(5)
srec_mem(5)
srec_mif(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)

srec_msbin(5)
srec_needham(5)
srec_os65v(5)
srec_ppb(5)
srec_ppx(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_stewie(5)

srec_tektronix_extended(5)

srec_tektronix(5)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_ti_txt(5)
srec_vmem(5)

srec_wilson(5)
srec_logisim(5)

Reference Manual

35
54
117
117
35
81
83
84
85
87

88
89
90
91

93
94
95

96

97
100
112
114
117
119
121

123

125

126
127
128

129
131
132
133
137

135
138

141

144

147

149
111

srec cmp - compare two EPROM load
SRecord - input

srec mips flash - MIPS-

srec mips

srec cmp - compare two EPROM load files
srec aomf - Intel Absolute Object Module
srec ascii hex - Ascii-Hex file

srec atmel generic - Atmel Generic file
srec binary - binary file

srec brecord - Freescale MC68EZ328
Dragonball bootstrap record

srec coe - Xilinx Coefficient File

srec cosmac - RCA Cosmac EIf file

srec dec binary - DEC Binary (XXDP) file
srec emon52 - Elektor Monitor (EMONS52)
file

srec fairchild - Fairchild Fairbug file

srec fastload - LSI Logic Fast Load file
srec formatted binary - Formatted Binary
file

srec forth - FORTH file

srec fpc - four packed code file

srec idt - IDT/sim binary file

srec mem - Lattice Memory Initialization
srec mif - Memory Initialization File (MIF)
srec mips flash - MIPS-Flash file

srec mos tech - MOS Technology file

srec motorola - Motorola S-Record
hexadecimal file

srec msbin - Windows CE Binary Image
Data

srec needham - Needham EMP-series
programmer ASCII file

srec 0s65v - OS65V Loader file

srec ppb - Stag Prom Programmer binary
srec ppx - Stag Prom Programmer
hexadecimal

srec signetics - Signetics file

srec spasm - SPASM file

srec spectrum - Spectrum file

srec stewie - Stewie’s binary file

srec tektronix extended - Tektronix
Extended hexadecimal file

srec tektronix - Tektronix hexadecimal file
srec ti tagged 16 - Texas Instruments Tagged
(SDSMAC 320) file

srec ti tagged - Texas Instruments Tagged
(SDSMAC) file

srec ti txt - Texas Instruments ti-txt
(MSP430) file

srec vmem - vmem file

srec wilson - wilson file

srec logisim -

SRecord

Table of Contents(SRecord)

files for equality

file specifications

Flash file format

flash - MIPS-Flash file format
for equality

Format

format

format

format

format

Format
format
format
format

format
format
format

format
format
format
format
format
format
format
format

Format
format
format
format
format
format
format
format
format

format

format
format

format
format

format
format

format Logisim EPROM load files

Vi

Table of Contents(SRecord)

srec_intel16(5)
srec_intel(5)
srec_trs80(5)
srec_formatted_binary(5)
srec_formatted_binary(5)

srec_forth(5)
srec_forth(5)
srec_fpc(5)
srec_fpc(5)
srec_brecord(5)

srecord_license(3)
srec_atmel_generic(5)
srec_atmel_generic(5)
srecord_license(3)
srec_intel16(5)
srec_motorola(5)
srec_tektronix_extended(5)

srec_tektronix(5)
srec_ppx(5)
srec_intel(5)
srec_ascii_hex(5)
srec_ascii_hex(5)
srec_examples(1)
srec_idt(5)
srec_idt(5)
srec_msbin(5)
srec_info(1)
srec_info(1)
srec_mif(5)
srec_mem(5)
srec_input(1)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_ti_txt(5)
srec_intel16(5)

srec_aomf(5)
srec_intel16(5)

srec_intel(5)
srec_intel(5)
srec_mem(5)
srecord_license(3)

srecord_license(3)

srecord(3)
srecord_license(3)

Reference Manual

101
105
145
95
95

96
96
97
97
87

78
84
84
78
101
121
137

135
128
105
83
83
38
100
100
123
51
51
114
112
54
138

141
144
101

81
101

105

105

112

78
78

78

srec intel16 - Intel Hexadecimal 16-bit file
srec intel - Intel Hexadecimal object file
srec trs80 - Radio Shack TRS-80 object file
srec formatted binary -

srec

srec forth -
srec

srec fpc -
srec

srec brecord -

LGPG - GNU Lesser

srec atmel

srec atmel generic - Atmel

LGPG -

srec intel16 - Intel

srec motorola - Motorola S-Record
srec tektronix extended - Tektronix
Extended

srec tektronix - Tektronix

srec ppx - Stag Prom Programmer
srec intel - Intel

srec ascii

srec ascii hex - Ascii-

srec examples - examples of

srec

srec idt -

srec msbin - Windows CE Binary
srec

srec info -

srec mif - Memory

srec mem - Lattice Memory
SRecord -

srec ti tagged 16 - Texas

srec ti tagged - Texas
srec ti txt - Texas

Srec

srec aomf -
srec intel16 -

srec intel -
srec
srec mem -

LGPG - GNU

srecord -
LGPG - GNU Lesser General Public

SRecord

Table of Contents(SRecord)

format specification

format specification

format specification

Formatted Binary file format

formatted binary - Formatted Binary file
format

FORTH file format

forth - FORTH file format

four packed code file format

fpc - four packed code file format
Freescale MC68EZ328 Dragonball
bootstrap record format

General Public License

generic - Atmel Generic file format
Generic file format

GNU Lesser General Public License
Hexadecimal 16-bit file format specification
hexadecimal file format

hexadecimal file format

hexadecimal file format

hexadecimal format

Hexadecimal object file format specification
hex - Ascii-Hex file format

Hex file format

how to use SRecord

idt - IDT/sim binary file format

IDT/sim binary file format

Image Data Format

info - information about EPROM load files
information about EPROM load files
Initialization File (MIF) format
Initialization format

input file specifications

Instruments Tagged (SDSMAC 320) file
format

Instruments Tagged (SDSMAC) file format
Instruments ti-txt (MSP430) file format
intel16 - Intel Hexadecimal 16-bit file
format specification

Intel Absolute Object Module Format
Intel Hexadecimal 16-bit file format
specification

Intel Hexadecimal object file format
specification

intel - Intel Hexadecimal object file format
specification

Lattice Memory Initialization format
Lesser General Public License

LGPG - GNU Lesser General Public
License

library to manipulate EPROM load files
License

vii

Table of Contents(SRecord)

srec_os65v(5)
srec_fastload(5)
srec_cat(1)
srec_info(1)
srec_logisim(5)
srecord(3)
srec_cmp(1)
srec_fastload(5)
srec_logisim(5)
srec_logisim(5)
srec_fastload(5)
srec_cat(1)
srecord(3)
srec_brecord(5)

srec_mem(5)
srec_mif(5)
srec_mem(5)
srec_mif(5)
srec_mif(5)

srec_mips_flash(5)
srec_mips_flash(5)
srec_aomf(5)
srec_emon52(5)
srec_mos_tech(5)
srec_mos_tech(5)
srec_motorola(5)

srec_motorola(5)
srec_msbin(5)

srec_ti_txt(5)
srec_needham(5)

srec_needham(5)

srec_intel(5)
srec_trs80(5)
srec_aomf(5)
srec_os65v(5)
srec_os65v(5)
srec_fpc(5)
srec_ppb(5)
srec_ppx(5)

srec_needham(5)
srec_ppb(5)
srec_ppx(5)
srec_ppb(5)
srec_ppx(5)
srecord_license(3)

Reference Manual

126
94
27
51

111

35
94
111
111
94
27

87

112
114
112
114
114

117
117

81

91
119
119
121

121
123

144
125

125

105
145

81
126
126

97
127
128

125
127
128
127
128

78

srec 0s65v - OS65V

srec fastload - LSI Logic Fast

srec cat - manipulate EPROM

srec info - information about EPROM
srec logisim - format Logisim EPROM
srecord - library to manipulate EPROM
srec cmp - compare two EPROM

srec fastload - LSI

srec logisim - format

srec

srec fastload -

srec cat -

srecord - library to

srec brecord - Freescale

srec
srec mif -

srec mem - Lattice

srec mif - Memory Initialization File (
srec

srec mips flash -

srec

srec aomf - Intel Absolute Object
srec emon5?2 - Elektor

srec

srec mos tech -

srec

srec motorola -
srec

srec ti txt - Texas Instruments ti-txt (
srec needham -

Srec

srec intel - Intel Hexadecimal
srec trs80 - Radio Shack TRS-80
srec aomf - Intel Absolute

srec 0s65v -

srec

srec fpc - four

srec

srec

srec needham - Needham EMP-series
srec ppb - Stag Prom

srec ppx - Stag Prom

srec ppb - Stag

srec ppx - Stag

LGPG - GNU Lesser General

SRecord

Table of Contents(SRecord)

Loader file format

Load file format

load files

load files

load files

load files

load files for equality

Logic Fast Load file format

Logisim EPROM load files

logisim - format Logisim EPROM load files
LSI Logic Fast Load file format
manipulate EPROM load files

manipulate EPROM load files
MC68EZ328 Dragonball bootstrap record
format

mem - Lattice Memory Initialization format
Memory Initialization File (MIF) format
Memory Initialization format

MIF) format

mif - Memory Initialization File (MIF)
format

MIPS-Flash file format

mips flash - MIPS-Flash file format
Module Format

Monitor (EMONS52) file format

mos tech - MOS Technology file format
MOS Technology file format

motorola - Motorola S-Record hexadecimal
file format

Motorola S-Record hexadecimal file format
msbin - Windows CE Binary Image Data
Format

MSP430) file format

Needham EMP-series programmer ASCII
file format

needham - Needham EMP-series
programmer ASCII file format

object file format specification

object file format specification

Object Module Format

0S65V Loader file format

0s65v - OS65V Loader file format

packed code file format

ppb - Stag Prom Programmer binary format
ppx - Stag Prom Programmer hexadecimal
format

programmer ASCII file format
Programmer binary format

Programmer hexadecimal format

Prom Programmer binary format

Prom Programmer hexadecimal format
Public License

viii

Table of Contents(SRecord)

srec_trs80(5)

srec_cosmac(5)
srec_brecord(5)

srec_motorola(5)
srec_stewie(5)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_needham(5)
srec_trs80(5)

srec_signetics(5)
srec_signetics(5)
srec_idt(5)
srec_spasm(5)
srec_spasm(5)
srec_intel16(5)

srec_intel(5)
srec_trs80(5)
srec_input(1)
srec_spectrum(5)
srec_spectrum(5)

srec_aomf(5)

srec_ascii_hex(5)
srec_atmel_generic(5)

srec_binary(5)
srec_brecord(5)

srec_cat(1)
srec_cmp(1)

srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)

srec_examples(1)

srec_fairchild(5)
srec_fastload(5)

srec_formatted_binary(5)

srec_forth(5)
srec_fpc(5)

Reference Manual

145

89
87

121
133
138

141
125
145

129
129
100
131
131
101

105
145
54
132
132
81

83
84

85
87

27
35

88
89
90
91
38

93
94

95

96
97

srec trs80 -

srec cosmac -
srec brecord - Freescale MC68EZ328
Dragonball bootstrap

srec motorola - Motorola S-

srec stewie - Stewie’

srec ti tagged 16 - Texas Instruments Tagged
(

srec ti tagged - Texas Instruments Tagged (
srec needham - Needham EMP-

srec trs80 - Radio

srec signetics -

srec

srec idt - IDT/

srec spasm -

srec

srec intel16 - Intel Hexadecimal 16-bit file
format

srec intel - Intel Hexadecimal object file
format

srec trs80 - Radio Shack TRS-80 object file
format

SRecord - input file

srec spectrum -

srec

SRecord

Table of Contents(SRecord)

Radio Shack TRS-80 object file format
specification

RCA Cosmac EIf file format

record format

Record hexadecimal file format
s binary file format
SDSMAC 320) file format

SDSMAC) file format

series programmer ASCII file format
Shack TRS-80 object file format
specification

Signetics file format

signetics - Signetics file format

sim binary file format

SPASM file format

spasm - SPASM file format
specification

specification
specification

specifications

Spectrum file format

spectrum - Spectrum file format

srec aomf - Intel Absolute Object Module
Format

srec ascii hex - Ascii-Hex file format

srec atmel generic - Atmel Generic file
format

srec binary - binary file format

srec brecord - Freescale MC68EZ328
Dragonball bootstrap record format

srec cat - manipulate EPROM load files
srec cmp - compare two EPROM load files
for equality

srec coe - Xilinx Coefficient File Format
srec cosmac - RCA Cosmac Elf file format
srec dec binary - DEC Binary (XXDP) file
format

srec emon52 - Elektor Monitor (EMONS52)
file format

srec examples - examples of how to use
SRecord

srec fairchild - Fairchild Fairbug file format
srec fastload - LSI Logic Fast Load file
format

srec formatted binary - Formatted Binary
file format

srec forth - FORTH file format

srec fpc - four packed code file format

iX

Table of Contents(SRecord)
srec_idt(5)
srec_info(1)
srec_intel16(5)
srec_intel(5)
srec_logisim(5)
srec_mem(5)
srec_mif(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)
srec_msbin(5)
srec_needham(5)
srec_examples(1)
srec_motorola(5)
srec_input(1)

srecord(3)

srec_os65v(5)
srec_ppb(5)

srec_ppx(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_stewie(5)
srec_tektronix_extended(5)
srec_tektronix(5)
srec_ti_tagged_16(5)
srec_ti_tagged(5)
srec_ti_txt(5)
srec_trs80(5)
srec_vmem(5)
srec_wilson(5)
srec_ppb(5)
srec_ppx(5)

srec_stewie(5)
srec_stewie(5)

Reference Manual

100
51

101
105
111
112
114
117
119
121
123
125

38

121
54

126
127

128

129
131
132
133
137

135
138
141
144
145
147
149
127
128

133
133

srec examples - examples of how to use
srec motorola - Motorola

srec ppb -
srec ppx -
srec stewie -
srec

SRecord

Table of Contents(SRecord)

srec idt - IDT/sim binary file format

srec info - information about EPROM load
files

srec intel16 - Intel Hexadecimal 16-bit file
format specification

srec intel - Intel Hexadecimal object file
format specification

srec logisim - format Logisim EPROM load
files

srec mem - Lattice Memory Initialization
format

srec mif - Memory Initialization File (MIF)
format

srec mips flash - MIPS-Flash file format
srec mos tech - MOS Technology file format
srec motorola - Motorola S-Record
hexadecimal file format

srec msbin - Windows CE Binary Image
Data Format

srec needham - Needham EMP-series
programmer ASCII file format

SRecord

S-Record hexadecimal file format

SRecord - input file specifications

srecord - library to manipulate EPROM load
files

srec 0s65v - OS65V Loader file format
srec ppb - Stag Prom Programmer binary
format

srec ppx - Stag Prom Programmer
hexadecimal format

srec signetics - Signetics file format

srec spasm - SPASM file format

srec spectrum - Spectrum file format

srec stewie - Stewie’s binary file format
srec tektronix extended - Tektronix
Extended hexadecimal file format

srec tektronix - Tektronix hexadecimal file
format

srec ti tagged 16 - Texas Instruments Tagged
(SDSMAC 320) file format

srec ti tagged - Texas Instruments Tagged
(SDSMAC) file format

srec ti txt - Texas Instruments ti-txt
(MSP430) file format

srec trs80 - Radio Shack TRS-80 object file
format specification

srec vmem - vmem file format

srec wilson - wilson file format

Stag Prom Programmer binary format

Stag Prom Programmer hexadecimal format
Stewie’s binary file format

stewie - Stewie’s binary file format

Table of Contents(SRecord)

srec_ti_tagged_16(5)

srec_ti_tagged_16(5)
srec_ti_tagged(5)
srec_ti_tagged(5)

srec_mos_tech(5)
srec_mos_tech(5)
srec_tektronix_extended(5)
srec_tektronix_extended(5)

srec_tektronix(5)
srec_tektronix(5)

srec_ti_tagged_16(5)
srec_ti_tagged(5)
srec_ti_txt(5)
srec_ti_tagged_16(5)
srec_ti_tagged(5)

srec_ti_txt(5)
srec_ti_txt(5)

srec_trs80(5)
srec_trs80(5)

srec_cmp(1)
srec_ti_txt(5)
srec_ti_txt(5)

srec_examples(1)
srec_os65v(5)
srec_vmem(5)
srec_vmem(5)
srec_os65v(5)
srec_wilson(5)
srec_wilson(5)
srec_msbin(5)
srec_coe(5)
srec_dec_binary(5)

Reference Manual

138

138
141
141

119
119
137
137

135
135

138

141

144

138

141

144
144

145
145

35
144
144

38
126
147
147
126
149
149
123

88

90

srec ti

srec ti tagged 16 - Texas Instruments
srec ti tagged - Texas Instruments
srec ti

srec mos
srec mos tech - MOS
srec tektronix extended -
srec

srec tektronix -
srec

srec ti tagged 16 -
srec ti tagged -
srec ti txt -

srec

srec

srec ti txt - Texas Instruments
srec

srec trs80 - Radio Shack
srec

srec cmp - compare
srec ti txt - Texas Instruments ti-
srec ti

srec examples - examples of how to
srec 0s65v - OS65

srec vmem -

srec

srec 0s65

srec wilson -

srec

srec msbin -

srec coe -

srec dec binary - DEC Binary (

SRecord

Table of Contents(SRecord)

tagged 16 - Texas Instruments Tagged
(SDSMAC 320) file format

Tagged (SDSMAC 320) file format
Tagged (SDSMAC) file format

tagged - Texas Instruments Tagged
(SDSMAC) file format

tech - MOS Technology file format
Technology file format

Tektronix Extended hexadecimal file format
tektronix extended - Tektronix Extended
hexadecimal file format

Tektronix hexadecimal file format
tektronix - Tektronix hexadecimal file
format

Texas Instruments Tagged (SDSMAC 320)
file format

Texas Instruments Tagged (SDSMAC) file
format

Texas Instruments ti-txt (MSP430) file
format

ti tagged 16 - Texas Instruments Tagged
(SDSMAC 320) file format

ti tagged - Texas Instruments Tagged
(SDSMAC) file format

ti-txt (MSP430) file format

ti txt - Texas Instruments ti-txt (MSP430)
file format

TRS-80 object file format specification
trs80 - Radio Shack TRS-80 object file
format specification

two EPROM load files for equality

txt (MSP430) file format

txt - Texas Instruments ti-txt (MSP430) file
format

use SRecord

V Loader file format

vmem file format

vmem - vimem file format

v - OS65V Loader file format

wilson file format

wilson - wilson file format

Windows CE Binary Image Data Format
Xilinx Coefficient File Format

XXDP) file format

X1

